Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
164б |
001 Introduction.en.srt |
2.67Кб |
001 Introduction.mp4 |
11.45Мб |
002 What is a Model_.en.srt |
1.67Кб |
002 What is a Model_.mp4 |
4.78Мб |
003 How do we create a Model_.en.srt |
3.02Кб |
003 How do we create a Model_.mp4 |
6.70Мб |
004 Types of Machine Learning.en.srt |
4.82Кб |
004 Types of Machine Learning.mp4 |
13.12Мб |
005 Creating a Spyder development environment.en.srt |
2.31Кб |
005 Creating a Spyder development environment.mp4 |
17.80Мб |
006 python-np-pd-plt.zip |
1.02Кб |
006 Python NumPy Pandas Matplotlib crash course.en.srt |
16.69Кб |
006 Python NumPy Pandas Matplotlib crash course.mp4 |
136.73Мб |
007 Building and evaluating a Classification Model.mp4 |
111.66Мб |
007 git-hub-link.txt |
51б |
007 ml-classification.zip |
1.06Кб |
008 Saving the Model and the Scaler.en.srt |
4.93Кб |
008 Saving the Model and the Scaler.mp4 |
26.61Мб |
009 Predicting locally with deserialized Pickle objects.en.srt |
3.42Кб |
009 Predicting locally with deserialized Pickle objects.mp4 |
21.82Мб |
009 use-model.zip |
337б |
010 use-model-colab.zip |
2.51Кб |
010 Using the Model in Google Colab environment.en.srt |
5.15Кб |
010 Using the Model in Google Colab environment.mp4 |
25.29Мб |
011 flask-hello-world.zip |
672б |
011 Flask REST API Hello World.en.srt |
5.08Кб |
011 Flask REST API Hello World.mp4 |
33.49Мб |
012 classifier-rest-service.zip |
822б |
012 Creating a REST API for the Model.en.srt |
4.44Кб |
012 Creating a REST API for the Model.mp4 |
43.86Мб |
013 Signing up for a Google Cloud free trial.en.srt |
1.79Кб |
013 Signing up for a Google Cloud free trial.mp4 |
9.01Мб |
014 classifier-rest-service-on-GCP.zip |
898б |
014 Hosting the Machine Learning REST API on the Cloud.mp4 |
52.17Мб |
015 Deleting the VM instance.en.srt |
783б |
015 Deleting the VM instance.mp4 |
3.77Мб |
016 google-cloud-functions-serverless-ml.zip |
851б |
016 Serverless Machine Learning API using Cloud Functions.en.srt |
11.36Кб |
016 Serverless Machine Learning API using Cloud Functions.mp4 |
55.22Мб |
017 colab-rest-api.zip |
4.81Кб |
017 Creating a REST API on Google Colab.en.srt |
4.13Кб |
017 Creating a REST API on Google Colab.mp4 |
29.09Мб |
018 Postman REST client.en.srt |
2.15Кб |
018 Postman REST client.mp4 |
13.12Мб |
019 Understanding Deep Learning Neural Network.en.srt |
6.15Кб |
019 Understanding Deep Learning Neural Network.mp4 |
22.35Мб |
020 Building and deploying PyTorch models.en.srt |
12.03Кб |
020 Building and deploying PyTorch models.mp4 |
64.45Мб |
020 save-export-reload-pytorch-models.zip |
11.26Кб |
021 Creating a REST API for the PyTorch Model.mp4 |
33.41Мб |
021 pytorch-flask.zip |
777б |
022 Saving & loading TensorFlow Keras models.mp4 |
38.67Мб |
022 tf-serving-save-export.zip |
21.15Кб |
023 Understanding Docker containers.en.srt |
3.50Кб |
023 Understanding Docker containers.mp4 |
9.08Мб |
024 Creating a REST API using TensorFlow Model Server.mp4 |
42.34Мб |
024 tf-model-serving.zip |
3.04Кб |
025 Converting a PyTorch model to TensorFlow format using ONNX.mp4 |
22.30Мб |
025 pytorch-create-save-onnx.zip |
7.48Кб |
026 Converting text to numeric values using bag-of-words model.en.srt |
5.79Кб |
026 Converting text to numeric values using bag-of-words model.mp4 |
33.34Мб |
027 tf-idf model for converting text to numeric values.en.srt |
5.19Кб |
027 tf-idf model for converting text to numeric values.mp4 |
29.80Мб |
028 Creating and saving text classifier and tf-idf models.en.srt |
12.45Кб |
028 Creating and saving text classifier and tf-idf models.mp4 |
67.56Мб |
028 text-classifier.zip.zip |
29.80Кб |
029 Creating a Twitter developer account.en.srt |
2.51Кб |
029 Creating a Twitter developer account.mp4 |
16.84Мб |
030 Deploying tf-idf and text classifier models for Twitter sentiment analysis.en.srt |
5.56Кб |
030 Deploying tf-idf and text classifier models for Twitter sentiment analysis.mp4 |
40.27Мб |
030 twitter-sentiment-analysis.zip |
34.31Кб |
031 Creating a text classifier using PyTorch.en.srt |
3.95Кб |
031 Creating a text classifier using PyTorch.mp4 |
24.47Мб |
031 text-classifier-pytorch.zip |
18.42Кб |
032 Creating a REST API for the PyTorch NLP model.mp4 |
27.59Мб |
032 pytorch-nlp-rest.zip |
1.02Кб |
033 twitter-pytorch-rest.zip |
24.02Кб |
033 Twitter sentiment analysis with PyTorch REST API.mp4 |
40.15Мб |
034 Creating a text classifier using TensorFlow.en.srt |
1.72Кб |
034 Creating a text classifier using TensorFlow.mp4 |
10.45Мб |
034 text-classifier-tensorflow.zip |
8.73Кб |
035 Creating a REST API for TensforFlow models using Flask.en.srt |
2.76Кб |
035 Creating a REST API for TensforFlow models using Flask.mp4 |
19.16Мб |
035 tf-nlp-flask-rest.zip |
5.09Мб |
036 Serving TensorFlow models serverless.en.srt |
6.98Кб |
036 Serving TensorFlow models serverless.mp4 |
45.18Мб |
036 tf-serverless.zip |
5.08Мб |
037 pytorch-serverless.zip |
20.24Кб |
037 Serving PyTorch models serverless.en.srt |
3.25Кб |
037 Serving PyTorch models serverless.mp4 |
22.65Мб |
038 TensorFlow.js introduction.en.srt |
2.28Кб |
038 TensorFlow.js introduction.mp4 |
5.05Мб |
039 Installing Visual Studio Code and Live Server.en.srt |
2.82Кб |
039 Installing Visual Studio Code and Live Server.mp4 |
15.88Мб |
040 javascript-crash-course.zip |
27.27Кб |
040 JavaScript crash course (optional).en.srt |
24.68Кб |
040 JavaScript crash course (optional).mp4 |
147.10Мб |
041 Adding TensforFlow.js to a web page.en.srt |
2.00Кб |
041 Adding TensforFlow.js to a web page.mp4 |
15.36Мб |
041 tfjs1.zip |
542б |
042 Basic tensor operations using TensorFlow.js.en.srt |
1.66Кб |
042 Basic tensor operations using TensorFlow.js.mp4 |
11.39Мб |
042 tfjs2.zip |
642б |
043 Deploying Keras model on a web page using TensorFlow.js.en.srt |
3.63Кб |
043 Deploying Keras model on a web page using TensorFlow.js.mp4 |
23.90Мб |
043 tfjs4.zip |
10.30Кб |
044 Deriving formula from a Linear Regression Model.en.srt |
11.69Кб |
044 Deriving formula from a Linear Regression Model.mp4 |
64.05Мб |
044 linear-regression.zip |
1.00Кб |
045 Machine Learning Operations (MLOps).mp4 |
9.05Мб |
046 MLflow Introduction.en.srt |
1.06Кб |
046 MLflow Introduction.mp4 |
4.81Мб |
047 ml-pipeline-mlfow.zip |
841б |
047 Tracking Model training experiments with MLfLow.en.srt |
10.04Кб |
047 Tracking Model training experiments with MLfLow.mp4 |
71.46Мб |
048 Why track ML experiments_.en.srt |
1.06Кб |
048 Why track ML experiments_.mp4 |
2.28Мб |
049 Running MLflow on Colab.en.srt |
3.14Кб |
049 Running MLflow on Colab.mp4 |
25.11Мб |
049 running-mlflow-on-colab.zip |
5.72Кб |
050 mlflow-pytorch.zip |
7.58Кб |
050 Tracking PyTorch experiments with MLflow.en.srt |
2.77Кб |
050 Tracking PyTorch experiments with MLflow.mp4 |
19.12Мб |
051 Deploying Models with MLflow.en.srt |
2.29Кб |
051 Deploying Models with MLflow.mp4 |
13.07Мб |
051 mlflow-deploy.zip |
635б |
1 |
221.56Кб |
10 |
143.89Кб |
11 |
163.59Кб |
12 |
239.53Кб |
13 |
361.68Кб |
14 |
335.85Кб |
15 |
14.42Кб |
16 |
96.71Кб |
17 |
166.97Кб |
18 |
203.51Кб |
19 |
415.96Кб |
2 |
348.50Кб |
20 |
420.52Кб |
21 |
403.83Кб |
22 |
217.38Кб |
23 |
402.36Кб |
24 |
29.92Кб |
25 |
104.29Кб |
26 |
359.93Кб |
27 |
151.01Кб |
28 |
206.94Кб |
29 |
183.27Кб |
3 |
43.14Кб |
30 |
348.59Кб |
31 |
390.52Кб |
32 |
208.78Кб |
33 |
163.48Кб |
34 |
126.47Кб |
35 |
141.51Кб |
36 |
385.78Кб |
37 |
387.90Кб |
38 |
436.88Кб |
39 |
53.54Кб |
4 |
453.32Кб |
40 |
113.18Кб |
41 |
53.61Кб |
42 |
426.02Кб |
43 |
465.09Кб |
44 |
499.54Кб |
45 |
302.55Кб |
46 |
418.46Кб |
47 |
433.83Кб |
48 |
465.53Кб |
49 |
193.39Кб |
5 |
54.03Кб |
50 |
224.55Кб |
51 |
235.58Кб |
6 |
463.29Кб |
7 |
288.49Кб |
8 |
335.47Кб |
9 |
326.73Кб |
TutsNode.com.txt |
63б |