Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
153б |
001 Welcome.en.srt |
6.16Кб |
001 Welcome.mp4 |
42.59Мб |
002 Introduction.en.srt |
5.95Кб |
002 Introduction.mp4 |
35.75Мб |
003 DO NOT SKIP IT _ Download Working Files.html |
1.85Кб |
003 Sentiment-Classification-using-BERT.zip |
326.88Кб |
004 What is BERT.en.srt |
8.50Кб |
004 What is BERT.mp4 |
45.28Мб |
005 What is ktrain.en.srt |
6.82Кб |
005 What is ktrain.mp4 |
32.84Мб |
006 Going Deep Inside ktrain Package.en.srt |
6.86Кб |
006 Going Deep Inside ktrain Package.mp4 |
31.32Мб |
007 Notebook Setup.en.srt |
3.24Кб |
007 Notebook Setup.mp4 |
7.15Мб |
008 Must Read.html |
1.72Кб |
009 Installing ktrain.en.srt |
6.84Кб |
009 Installing ktrain.mp4 |
29.94Мб |
010 Loading Dataset.en.srt |
6.53Кб |
010 Loading Dataset.mp4 |
20.23Мб |
011 Train-Test Split and Preprocess with BERT.en.srt |
11.94Кб |
011 Train-Test Split and Preprocess with BERT.mp4 |
51.43Мб |
012 BERT Model Training.en.srt |
15.08Кб |
012 BERT Model Training.mp4 |
56.84Мб |
013 Testing Fine Tuned BERT Model.en.srt |
7.04Кб |
013 Testing Fine Tuned BERT Model.mp4 |
21.04Мб |
014 Saving and Loading Fine Tuned Model.en.srt |
10.51Кб |
014 Saving and Loading Fine Tuned Model.mp4 |
25.46Мб |
015 Fine-Tuning-BERT-for-Disaster-Tweets-Classification.zip |
2.55Мб |
015 Resources Folder.html |
926б |
016 BERT Intro - Disaster Tweets Dataset Understanding.en.srt |
14.16Кб |
016 BERT Intro - Disaster Tweets Dataset Understanding.mp4 |
109.80Мб |
017 Download Dataset.en.srt |
5.47Кб |
017 Download Dataset.mp4 |
29.73Мб |
018 Target Class Distribution.en.srt |
8.58Кб |
018 Target Class Distribution.mp4 |
31.48Мб |
019 Number of Characters Distribution in Tweets.en.srt |
14.58Кб |
019 Number of Characters Distribution in Tweets.mp4 |
83.53Мб |
020 Number of Words, Average Words Length, and Stop words Distribution in Tweets.en.srt |
8.35Кб |
020 Number of Words, Average Words Length, and Stop words Distribution in Tweets.mp4 |
41.00Мб |
021 Most and Least Common Words.en.srt |
8.73Кб |
021 Most and Least Common Words.mp4 |
43.39Мб |
022 One-Shot Data Cleaning.en.srt |
6.24Кб |
022 One-Shot Data Cleaning.mp4 |
32.03Мб |
023 Disaster Words Visualization with Word Cloud.en.srt |
5.95Кб |
023 Disaster Words Visualization with Word Cloud.mp4 |
42.16Мб |
024 Classification with TFIDF and SVM.en.srt |
9.79Кб |
024 Classification with TFIDF and SVM.mp4 |
44.18Мб |
025 Classification with Word2Vec and SVM.en.srt |
11.06Кб |
025 Classification with Word2Vec and SVM.mp4 |
52.89Мб |
026 Word Embeddings and Classification with Deep Learning Part 1.en.srt |
11.28Кб |
026 Word Embeddings and Classification with Deep Learning Part 1.mp4 |
52.87Мб |
027 Word Embeddings and Classification with Deep Learning Part 2.en.srt |
14.12Кб |
027 Word Embeddings and Classification with Deep Learning Part 2.mp4 |
73.57Мб |
028 BERT Model Building and Training.en.srt |
10.85Кб |
028 BERT Model Building and Training.mp4 |
55.15Мб |
029 BERT Model Evaluation.en.srt |
13.12Кб |
029 BERT Model Evaluation.mp4 |
58.43Мб |
030 DistilBERT-App.zip |
235.25Мб |
030 Sentiment-Classification-using-DistilBERT.zip |
10.48Кб |
030 What is DistilBERT_.en.srt |
12.53Кб |
030 What is DistilBERT_.mp4 |
74.05Мб |
031 Notebook Setup.en.srt |
7.07Кб |
031 Notebook Setup.mp4 |
24.38Мб |
032 Data Preparation.en.srt |
12.66Кб |
032 Data Preparation.mp4 |
54.61Мб |
033 DistilBERT Model Training.en.srt |
11.63Кб |
033 DistilBERT Model Training.mp4 |
41.60Мб |
034 Save Model at Google Drive.en.srt |
6.96Кб |
034 Save Model at Google Drive.mp4 |
22.76Мб |
035 Model Evaluation.en.srt |
4.57Кб |
035 Model Evaluation.mp4 |
14.91Мб |
036 Download Fine Tuned DistilBERT Model.en.srt |
2.04Кб |
036 Download Fine Tuned DistilBERT Model.mp4 |
4.89Мб |
037 Flask App Preparation.en.srt |
2.09Кб |
037 Flask App Preparation.mp4 |
6.24Мб |
038 Run Your First Flask Application.en.srt |
11.04Кб |
038 Run Your First Flask Application.mp4 |
32.38Мб |
039 Predict Sentiment at Your Local Machine.en.srt |
7.22Кб |
039 Predict Sentiment at Your Local Machine.mp4 |
21.88Мб |
040 Build Predict API.en.srt |
13.61Кб |
040 Build Predict API.mp4 |
56.18Мб |
041 Deploy DistilBERT Model at Your Local Machine.en.srt |
20.10Кб |
041 Deploy DistilBERT Model at Your Local Machine.mp4 |
69.47Мб |
042 Create AWS Account.en.srt |
9.35Кб |
042 Create AWS Account.mp4 |
36.62Мб |
043 Create Free Windows EC2 Instance.en.srt |
7.92Кб |
043 Create Free Windows EC2 Instance.mp4 |
47.68Мб |
044 Connect EC2 Instance from Windows 10.en.srt |
9.33Кб |
044 Connect EC2 Instance from Windows 10.mp4 |
52.49Мб |
045 Install Python on EC2 Windows 10.en.srt |
4.30Кб |
045 Install Python on EC2 Windows 10.mp4 |
15.78Мб |
046 Install TensorFlow 2 and KTRAIN.en.srt |
14.71Кб |
046 Install TensorFlow 2 and KTRAIN.mp4 |
66.57Мб |
047 Run Your First Flask Application on AWS EC2.en.srt |
10.46Кб |
047 Run Your First Flask Application on AWS EC2.mp4 |
29.13Мб |
048 Transfer DistilBERT Model to EC2 Flask Server.en.srt |
6.04Кб |
048 Transfer DistilBERT Model to EC2 Flask Server.mp4 |
24.44Мб |
049 Deploy ML Model on EC2 Server.en.srt |
17.67Кб |
049 Deploy ML Model on EC2 Server.mp4 |
71.00Мб |
050 Make Your ML Model Accessible to the World.en.srt |
17.73Кб |
050 Make Your ML Model Accessible to the World.mp4 |
66.81Мб |
051 Install Git Bash and Commander Terminal on Local Computer.en.srt |
10.69Кб |
051 Install Git Bash and Commander Terminal on Local Computer.mp4 |
40.92Мб |
052 Create AWS Account.en.srt |
9.35Кб |
052 Create AWS Account.mp4 |
36.63Мб |
053 Launch Ubuntu Machine on EC2.en.srt |
6.21Кб |
053 Launch Ubuntu Machine on EC2.mp4 |
31.39Мб |
054 Connect AWS Ubuntu (Linux) from Windows Computer.en.srt |
9.09Кб |
054 Connect AWS Ubuntu (Linux) from Windows Computer.mp4 |
32.55Мб |
055 Install PIP3 on AWS Ubuntu.en.srt |
7.56Кб |
055 Install PIP3 on AWS Ubuntu.mp4 |
44.61Мб |
056 Update and Upgrade Your Ubuntu Packages.en.srt |
3.47Кб |
056 Update and Upgrade Your Ubuntu Packages.mp4 |
19.87Мб |
057 Install TensorFlow 2 and KTRAIN.en.srt |
16.49Кб |
057 Install TensorFlow 2 and KTRAIN.mp4 |
93.58Мб |
058 Create Extra RAM from SSD by Memory Swapping.en.srt |
13.75Кб |
058 Create Extra RAM from SSD by Memory Swapping.mp4 |
83.72Мб |
059 Deploy DistilBERT ML Model on EC2 Ubuntu Machine.en.srt |
13.70Кб |
059 Deploy DistilBERT ML Model on EC2 Ubuntu Machine.mp4 |
44.20Мб |
060 NGINX Introduction.en.srt |
6.74Кб |
060 NGINX Introduction.mp4 |
36.62Мб |
060 NGINX-uWSGI-and-Flask-Installation-Guide-Jupyter-Notebook.zip |
86.60Кб |
061 Virtual Environment Setup.en.srt |
9.18Кб |
061 Virtual Environment Setup.mp4 |
57.70Мб |
062 Setting Up Flask Server.en.srt |
9.13Кб |
062 Setting Up Flask Server.mp4 |
50.74Мб |
063 Setting Up uWSGI Server.en.srt |
12.47Кб |
063 Setting Up uWSGI Server.mp4 |
101.74Мб |
064 Installing TensorFlow 2 and KTRAIN.en.srt |
8.92Кб |
064 Installing TensorFlow 2 and KTRAIN.mp4 |
56.08Мб |
065 Configuring uWSGI Server.en.srt |
5.99Кб |
065 Configuring uWSGI Server.mp4 |
32.86Мб |
066 Start API Services at System Startup.en.srt |
9.98Кб |
066 Start API Services at System Startup.mp4 |
58.14Мб |
067 Configuring NGINX with uWSGI, and Flask Server.en.srt |
13.53Кб |
067 Configuring NGINX with uWSGI, and Flask Server.mp4 |
91.78Мб |
068 Congrats! You Have Deployed ML Model in Production.en.srt |
24.55Кб |
068 Congrats! You Have Deployed ML Model in Production.mp4 |
84.90Мб |
069 FastText-App.zip |
18.54Мб |
069 FastText-Multi-Label-Text-Classification.zip |
4.49Кб |
069 NGINX-uWSGI-and-Flask-Installation-Guide-Jupyter-Notebook.zip |
95.39Кб |
069 What is Multi-Label Classification_.en.srt |
11.57Кб |
069 What is Multi-Label Classification_.mp4 |
32.74Мб |
070 FastText Research Paper Review.en.srt |
20.51Кб |
070 FastText Research Paper Review.mp4 |
160.06Мб |
071 Notebook Setup.en.srt |
9.95Кб |
071 Notebook Setup.mp4 |
45.76Мб |
072 Data Preparation.en.srt |
17.25Кб |
072 Data Preparation.mp4 |
67.42Мб |
073 FastText Model Training.en.srt |
9.76Кб |
073 FastText Model Training.mp4 |
38.62Мб |
074 FastText Model Evaluation and Saving at Google Drive.en.srt |
7.10Кб |
074 FastText Model Evaluation and Saving at Google Drive.mp4 |
19.93Мб |
075 Creating Fresh Ubuntu Machine.en.srt |
12.97Кб |
075 Creating Fresh Ubuntu Machine.mp4 |
59.30Мб |
076 Setting Python3 and PIP3 Alias.en.srt |
9.81Кб |
076 Setting Python3 and PIP3 Alias.mp4 |
49.32Мб |
077 Creating 4GB Extra RAM by Memory Swapping.en.srt |
5.58Кб |
077 Creating 4GB Extra RAM by Memory Swapping.mp4 |
37.03Мб |
078 Making Your Server Ready.en.srt |
9.73Кб |
078 Making Your Server Ready.mp4 |
76.49Мб |
079 Preparing Prediction APIs.en.srt |
19.96Кб |
079 Preparing Prediction APIs.mp4 |
80.76Мб |
080 Testing Prediction API at Local Machine.en.srt |
9.62Кб |
080 Testing Prediction API at Local Machine.mp4 |
40.22Мб |
081 Testing Prediction API at AWS Ubuntu Machine.en.srt |
13.54Кб |
081 Testing Prediction API at AWS Ubuntu Machine.mp4 |
77.45Мб |
082 Configuring uWSGI Server.en.srt |
9.62Кб |
082 Configuring uWSGI Server.mp4 |
58.27Мб |
083 Deploy FastText Model in Production with NGINX, uWSGI, and Flask.en.srt |
11.64Кб |
083 Deploy FastText Model in Production with NGINX, uWSGI, and Flask.mp4 |
58.62Мб |
1 |
385.47Кб |
10 |
562.32Кб |
11 |
524.50Кб |
12 |
969.54Кб |
13 |
438.73Кб |
14 |
1.94Кб |
15 |
544.11Кб |
16 |
594.66Кб |
17 |
197.67Кб |
18 |
436.28Кб |
19 |
717.02Кб |
2 |
203.95Кб |
20 |
384.84Кб |
21 |
581.33Кб |
22 |
743.95Кб |
23 |
879.96Кб |
24 |
311.08Кб |
25 |
166.53Кб |
26 |
838.52Кб |
27 |
944.36Кб |
28 |
875.17Кб |
29 |
402.56Кб |
3 |
262.25Кб |
30 |
108.04Кб |
31 |
130.70Кб |
32 |
525.16Кб |
33 |
585.16Кб |
34 |
269.42Кб |
35 |
700.74Кб |
36 |
332.05Кб |
37 |
248.05Кб |
38 |
738.35Кб |
39 |
397.86Кб |
4 |
425.39Кб |
40 |
819.92Кб |
41 |
835.93Кб |
42 |
628.80Кб |
43 |
414.73Кб |
44 |
863.52Кб |
45 |
413.49Кб |
46 |
24б |
47 |
83.17Кб |
48 |
802.80Кб |
49 |
387.48Кб |
5 |
224.51Кб |
50 |
993.16Кб |
51 |
382.21Кб |
52 |
387.72Кб |
53 |
390.21Кб |
54 |
253.45Кб |
55 |
145.18Кб |
56 |
167.65Кб |
57 |
265.80Кб |
58 |
462.68Кб |
59 |
633.60Кб |
6 |
98.69Кб |
60 |
993.26Кб |
61 |
536.49Кб |
62 |
625.60Кб |
63 |
700.13Кб |
64 |
57.04Кб |
65 |
278.84Кб |
66 |
889.30Кб |
67 |
552.91Кб |
68 |
571.09Кб |
69 |
639.17Кб |
7 |
287.22Кб |
70 |
246.93Кб |
71 |
125.80Кб |
72 |
980.10Кб |
73 |
792.05Кб |
74 |
73.32Кб |
75 |
131.35Кб |
76 |
475.00Кб |
77 |
223.67Кб |
78 |
95.45Кб |
79 |
868.35Кб |
8 |
483.74Кб |
80 |
776.76Кб |
81 |
110.04Кб |
9 |
244.49Кб |
TutsNode.com.txt |
63б |