Общая информация
Название Deployment of Machine Learning Models in Production Python
Тип
Размер 4.08Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 153б
001 Welcome.en.srt 6.16Кб
001 Welcome.mp4 42.59Мб
002 Introduction.en.srt 5.95Кб
002 Introduction.mp4 35.75Мб
003 DO NOT SKIP IT _ Download Working Files.html 1.85Кб
003 Sentiment-Classification-using-BERT.zip 326.88Кб
004 What is BERT.en.srt 8.50Кб
004 What is BERT.mp4 45.28Мб
005 What is ktrain.en.srt 6.82Кб
005 What is ktrain.mp4 32.84Мб
006 Going Deep Inside ktrain Package.en.srt 6.86Кб
006 Going Deep Inside ktrain Package.mp4 31.32Мб
007 Notebook Setup.en.srt 3.24Кб
007 Notebook Setup.mp4 7.15Мб
008 Must Read.html 1.72Кб
009 Installing ktrain.en.srt 6.84Кб
009 Installing ktrain.mp4 29.94Мб
010 Loading Dataset.en.srt 6.53Кб
010 Loading Dataset.mp4 20.23Мб
011 Train-Test Split and Preprocess with BERT.en.srt 11.94Кб
011 Train-Test Split and Preprocess with BERT.mp4 51.43Мб
012 BERT Model Training.en.srt 15.08Кб
012 BERT Model Training.mp4 56.84Мб
013 Testing Fine Tuned BERT Model.en.srt 7.04Кб
013 Testing Fine Tuned BERT Model.mp4 21.04Мб
014 Saving and Loading Fine Tuned Model.en.srt 10.51Кб
014 Saving and Loading Fine Tuned Model.mp4 25.46Мб
015 Fine-Tuning-BERT-for-Disaster-Tweets-Classification.zip 2.55Мб
015 Resources Folder.html 926б
016 BERT Intro - Disaster Tweets Dataset Understanding.en.srt 14.16Кб
016 BERT Intro - Disaster Tweets Dataset Understanding.mp4 109.80Мб
017 Download Dataset.en.srt 5.47Кб
017 Download Dataset.mp4 29.73Мб
018 Target Class Distribution.en.srt 8.58Кб
018 Target Class Distribution.mp4 31.48Мб
019 Number of Characters Distribution in Tweets.en.srt 14.58Кб
019 Number of Characters Distribution in Tweets.mp4 83.53Мб
020 Number of Words, Average Words Length, and Stop words Distribution in Tweets.en.srt 8.35Кб
020 Number of Words, Average Words Length, and Stop words Distribution in Tweets.mp4 41.00Мб
021 Most and Least Common Words.en.srt 8.73Кб
021 Most and Least Common Words.mp4 43.39Мб
022 One-Shot Data Cleaning.en.srt 6.24Кб
022 One-Shot Data Cleaning.mp4 32.03Мб
023 Disaster Words Visualization with Word Cloud.en.srt 5.95Кб
023 Disaster Words Visualization with Word Cloud.mp4 42.16Мб
024 Classification with TFIDF and SVM.en.srt 9.79Кб
024 Classification with TFIDF and SVM.mp4 44.18Мб
025 Classification with Word2Vec and SVM.en.srt 11.06Кб
025 Classification with Word2Vec and SVM.mp4 52.89Мб
026 Word Embeddings and Classification with Deep Learning Part 1.en.srt 11.28Кб
026 Word Embeddings and Classification with Deep Learning Part 1.mp4 52.87Мб
027 Word Embeddings and Classification with Deep Learning Part 2.en.srt 14.12Кб
027 Word Embeddings and Classification with Deep Learning Part 2.mp4 73.57Мб
028 BERT Model Building and Training.en.srt 10.85Кб
028 BERT Model Building and Training.mp4 55.15Мб
029 BERT Model Evaluation.en.srt 13.12Кб
029 BERT Model Evaluation.mp4 58.43Мб
030 DistilBERT-App.zip 235.25Мб
030 Sentiment-Classification-using-DistilBERT.zip 10.48Кб
030 What is DistilBERT_.en.srt 12.53Кб
030 What is DistilBERT_.mp4 74.05Мб
031 Notebook Setup.en.srt 7.07Кб
031 Notebook Setup.mp4 24.38Мб
032 Data Preparation.en.srt 12.66Кб
032 Data Preparation.mp4 54.61Мб
033 DistilBERT Model Training.en.srt 11.63Кб
033 DistilBERT Model Training.mp4 41.60Мб
034 Save Model at Google Drive.en.srt 6.96Кб
034 Save Model at Google Drive.mp4 22.76Мб
035 Model Evaluation.en.srt 4.57Кб
035 Model Evaluation.mp4 14.91Мб
036 Download Fine Tuned DistilBERT Model.en.srt 2.04Кб
036 Download Fine Tuned DistilBERT Model.mp4 4.89Мб
037 Flask App Preparation.en.srt 2.09Кб
037 Flask App Preparation.mp4 6.24Мб
038 Run Your First Flask Application.en.srt 11.04Кб
038 Run Your First Flask Application.mp4 32.38Мб
039 Predict Sentiment at Your Local Machine.en.srt 7.22Кб
039 Predict Sentiment at Your Local Machine.mp4 21.88Мб
040 Build Predict API.en.srt 13.61Кб
040 Build Predict API.mp4 56.18Мб
041 Deploy DistilBERT Model at Your Local Machine.en.srt 20.10Кб
041 Deploy DistilBERT Model at Your Local Machine.mp4 69.47Мб
042 Create AWS Account.en.srt 9.35Кб
042 Create AWS Account.mp4 36.62Мб
043 Create Free Windows EC2 Instance.en.srt 7.92Кб
043 Create Free Windows EC2 Instance.mp4 47.68Мб
044 Connect EC2 Instance from Windows 10.en.srt 9.33Кб
044 Connect EC2 Instance from Windows 10.mp4 52.49Мб
045 Install Python on EC2 Windows 10.en.srt 4.30Кб
045 Install Python on EC2 Windows 10.mp4 15.78Мб
046 Install TensorFlow 2 and KTRAIN.en.srt 14.71Кб
046 Install TensorFlow 2 and KTRAIN.mp4 66.57Мб
047 Run Your First Flask Application on AWS EC2.en.srt 10.46Кб
047 Run Your First Flask Application on AWS EC2.mp4 29.13Мб
048 Transfer DistilBERT Model to EC2 Flask Server.en.srt 6.04Кб
048 Transfer DistilBERT Model to EC2 Flask Server.mp4 24.44Мб
049 Deploy ML Model on EC2 Server.en.srt 17.67Кб
049 Deploy ML Model on EC2 Server.mp4 71.00Мб
050 Make Your ML Model Accessible to the World.en.srt 17.73Кб
050 Make Your ML Model Accessible to the World.mp4 66.81Мб
051 Install Git Bash and Commander Terminal on Local Computer.en.srt 10.69Кб
051 Install Git Bash and Commander Terminal on Local Computer.mp4 40.92Мб
052 Create AWS Account.en.srt 9.35Кб
052 Create AWS Account.mp4 36.63Мб
053 Launch Ubuntu Machine on EC2.en.srt 6.21Кб
053 Launch Ubuntu Machine on EC2.mp4 31.39Мб
054 Connect AWS Ubuntu (Linux) from Windows Computer.en.srt 9.09Кб
054 Connect AWS Ubuntu (Linux) from Windows Computer.mp4 32.55Мб
055 Install PIP3 on AWS Ubuntu.en.srt 7.56Кб
055 Install PIP3 on AWS Ubuntu.mp4 44.61Мб
056 Update and Upgrade Your Ubuntu Packages.en.srt 3.47Кб
056 Update and Upgrade Your Ubuntu Packages.mp4 19.87Мб
057 Install TensorFlow 2 and KTRAIN.en.srt 16.49Кб
057 Install TensorFlow 2 and KTRAIN.mp4 93.58Мб
058 Create Extra RAM from SSD by Memory Swapping.en.srt 13.75Кб
058 Create Extra RAM from SSD by Memory Swapping.mp4 83.72Мб
059 Deploy DistilBERT ML Model on EC2 Ubuntu Machine.en.srt 13.70Кб
059 Deploy DistilBERT ML Model on EC2 Ubuntu Machine.mp4 44.20Мб
060 NGINX Introduction.en.srt 6.74Кб
060 NGINX Introduction.mp4 36.62Мб
060 NGINX-uWSGI-and-Flask-Installation-Guide-Jupyter-Notebook.zip 86.60Кб
061 Virtual Environment Setup.en.srt 9.18Кб
061 Virtual Environment Setup.mp4 57.70Мб
062 Setting Up Flask Server.en.srt 9.13Кб
062 Setting Up Flask Server.mp4 50.74Мб
063 Setting Up uWSGI Server.en.srt 12.47Кб
063 Setting Up uWSGI Server.mp4 101.74Мб
064 Installing TensorFlow 2 and KTRAIN.en.srt 8.92Кб
064 Installing TensorFlow 2 and KTRAIN.mp4 56.08Мб
065 Configuring uWSGI Server.en.srt 5.99Кб
065 Configuring uWSGI Server.mp4 32.86Мб
066 Start API Services at System Startup.en.srt 9.98Кб
066 Start API Services at System Startup.mp4 58.14Мб
067 Configuring NGINX with uWSGI, and Flask Server.en.srt 13.53Кб
067 Configuring NGINX with uWSGI, and Flask Server.mp4 91.78Мб
068 Congrats! You Have Deployed ML Model in Production.en.srt 24.55Кб
068 Congrats! You Have Deployed ML Model in Production.mp4 84.90Мб
069 FastText-App.zip 18.54Мб
069 FastText-Multi-Label-Text-Classification.zip 4.49Кб
069 NGINX-uWSGI-and-Flask-Installation-Guide-Jupyter-Notebook.zip 95.39Кб
069 What is Multi-Label Classification_.en.srt 11.57Кб
069 What is Multi-Label Classification_.mp4 32.74Мб
070 FastText Research Paper Review.en.srt 20.51Кб
070 FastText Research Paper Review.mp4 160.06Мб
071 Notebook Setup.en.srt 9.95Кб
071 Notebook Setup.mp4 45.76Мб
072 Data Preparation.en.srt 17.25Кб
072 Data Preparation.mp4 67.42Мб
073 FastText Model Training.en.srt 9.76Кб
073 FastText Model Training.mp4 38.62Мб
074 FastText Model Evaluation and Saving at Google Drive.en.srt 7.10Кб
074 FastText Model Evaluation and Saving at Google Drive.mp4 19.93Мб
075 Creating Fresh Ubuntu Machine.en.srt 12.97Кб
075 Creating Fresh Ubuntu Machine.mp4 59.30Мб
076 Setting Python3 and PIP3 Alias.en.srt 9.81Кб
076 Setting Python3 and PIP3 Alias.mp4 49.32Мб
077 Creating 4GB Extra RAM by Memory Swapping.en.srt 5.58Кб
077 Creating 4GB Extra RAM by Memory Swapping.mp4 37.03Мб
078 Making Your Server Ready.en.srt 9.73Кб
078 Making Your Server Ready.mp4 76.49Мб
079 Preparing Prediction APIs.en.srt 19.96Кб
079 Preparing Prediction APIs.mp4 80.76Мб
080 Testing Prediction API at Local Machine.en.srt 9.62Кб
080 Testing Prediction API at Local Machine.mp4 40.22Мб
081 Testing Prediction API at AWS Ubuntu Machine.en.srt 13.54Кб
081 Testing Prediction API at AWS Ubuntu Machine.mp4 77.45Мб
082 Configuring uWSGI Server.en.srt 9.62Кб
082 Configuring uWSGI Server.mp4 58.27Мб
083 Deploy FastText Model in Production with NGINX, uWSGI, and Flask.en.srt 11.64Кб
083 Deploy FastText Model in Production with NGINX, uWSGI, and Flask.mp4 58.62Мб
1 385.47Кб
10 562.32Кб
11 524.50Кб
12 969.54Кб
13 438.73Кб
14 1.94Кб
15 544.11Кб
16 594.66Кб
17 197.67Кб
18 436.28Кб
19 717.02Кб
2 203.95Кб
20 384.84Кб
21 581.33Кб
22 743.95Кб
23 879.96Кб
24 311.08Кб
25 166.53Кб
26 838.52Кб
27 944.36Кб
28 875.17Кб
29 402.56Кб
3 262.25Кб
30 108.04Кб
31 130.70Кб
32 525.16Кб
33 585.16Кб
34 269.42Кб
35 700.74Кб
36 332.05Кб
37 248.05Кб
38 738.35Кб
39 397.86Кб
4 425.39Кб
40 819.92Кб
41 835.93Кб
42 628.80Кб
43 414.73Кб
44 863.52Кб
45 413.49Кб
46 24б
47 83.17Кб
48 802.80Кб
49 387.48Кб
5 224.51Кб
50 993.16Кб
51 382.21Кб
52 387.72Кб
53 390.21Кб
54 253.45Кб
55 145.18Кб
56 167.65Кб
57 265.80Кб
58 462.68Кб
59 633.60Кб
6 98.69Кб
60 993.26Кб
61 536.49Кб
62 625.60Кб
63 700.13Кб
64 57.04Кб
65 278.84Кб
66 889.30Кб
67 552.91Кб
68 571.09Кб
69 639.17Кб
7 287.22Кб
70 246.93Кб
71 125.80Кб
72 980.10Кб
73 792.05Кб
74 73.32Кб
75 131.35Кб
76 475.00Кб
77 223.67Кб
78 95.45Кб
79 868.35Кб
8 483.74Кб
80 776.76Кб
81 110.04Кб
9 244.49Кб
TutsNode.com.txt 63б
Статистика распространения по странам
Дания (DK) 1
Болгария (BG) 1
Россия (RU) 1
Хорватия (HR) 1
Южная Корея (KR) 1
Всего 5
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент