Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
2.79Кб |
001 Regression Intro.en.srt |
25.10Кб |
001 Regression Intro.mp4 |
22.98Мб |
001 Setup & Installation.en.srt |
14.74Кб |
001 Setup & Installation.mp4 |
79.19Мб |
001 Supervised Learning Intro.en.srt |
10.54Кб |
001 Supervised Learning Intro.mp4 |
9.41Мб |
002 Classification Intro.en.srt |
10.07Кб |
002 Classification Intro.mp4 |
20.48Мб |
002 Linear Regression Practical.en.srt |
29.49Кб |
002 Linear Regression Practical.mp4 |
142.48Мб |
002 Loading Datasets.en.srt |
12.70Кб |
002 Loading Datasets.mp4 |
15.82Мб |
003 Data Format.en.srt |
11.82Кб |
003 Data Format.mp4 |
35.45Мб |
003 Logistic Regression Theory.en.srt |
27.86Кб |
003 Logistic Regression Theory.mp4 |
56.33Мб |
003 Regularized Linear Regression Practical.en.srt |
33.74Кб |
003 Regularized Linear Regression Practical.mp4 |
140.67Мб |
004 Boston Housing Intro.en.srt |
27.22Кб |
004 Boston Housing Intro.mp4 |
166.06Мб |
004 Gradient Descent.en.srt |
16.86Кб |
004 Gradient Descent.mp4 |
37.93Мб |
004 Train Test Splitting.en.srt |
20.58Кб |
004 Train Test Splitting.mp4 |
80.63Мб |
005 Polynomial Regression.en.srt |
26.33Кб |
005 Polynomial Regression.mp4 |
121.95Мб |
005 Stratified Splitting.en.srt |
19.39Кб |
005 Stratified Splitting.mp4 |
86.67Мб |
005 Types of Classification Problems.en.srt |
19.07Кб |
005 Types of Classification Problems.mp4 |
44.07Мб |
006 Creating and Training a Binary Classifier.en.srt |
36.72Кб |
006 Creating and Training a Binary Classifier.mp4 |
212.03Мб |
006 Data Preparation and Exploration.en.srt |
34.58Кб |
006 Data Preparation and Exploration.mp4 |
185.10Мб |
006 Regression Losses and Learning Rates.en.srt |
17.38Кб |
006 Regression Losses and Learning Rates.mp4 |
14.36Мб |
007 Creating and Training a Multiclass Classifier.en.srt |
17.45Кб |
007 Creating and Training a Multiclass Classifier.mp4 |
99.91Мб |
007 SGD Regression.en.srt |
32.14Кб |
007 SGD Regression.mp4 |
177.57Мб |
008 Evaluating Classifiers Theory.en.srt |
15.53Кб |
008 Evaluating Classifiers Theory.mp4 |
30.94Мб |
008 KNN Regression Theory.en.srt |
4.71Кб |
008 KNN Regression Theory.mp4 |
12.03Мб |
009 KNN Regression Practical.en.srt |
11.83Кб |
009 KNN Regression Practical.mp4 |
83.25Мб |
009 Precision and Recall Theory.en.srt |
25.05Кб |
009 Precision and Recall Theory.mp4 |
53.03Мб |
010 ROC, Confusion Matrix, and Support Theory.en.srt |
8.55Кб |
010 ROC, Confusion Matrix, and Support Theory.mp4 |
17.96Мб |
010 SVM Regression Theory.en.srt |
7.63Кб |
010 SVM Regression Theory.mp4 |
21.69Мб |
011 MNIST Data Set Intro.en.srt |
9.46Кб |
011 MNIST Data Set Intro.mp4 |
28.59Мб |
011 SVM Regression Practical.en.srt |
13.41Кб |
011 SVM Regression Practical.mp4 |
85.83Мб |
012 Decision Tree Regression Theory.en.srt |
9.61Кб |
012 Decision Tree Regression Theory.mp4 |
20.54Мб |
012 Evaluating Classifiers Practical.en.srt |
23.55Кб |
012 Evaluating Classifiers Practical.mp4 |
115.80Мб |
013 Decision Tree and Random Forest Regression Practical.en.srt |
17.30Кб |
013 Decision Tree and Random Forest Regression Practical.mp4 |
101.25Мб |
013 Validation Set.en.srt |
6.76Кб |
013 Validation Set.mp4 |
33.46Мб |
014 Additional Regression Metrics.en.srt |
10.41Кб |
014 Additional Regression Metrics.mp4 |
16.82Мб |
014 Cross-Validation.en.srt |
36.91Кб |
014 Cross-Validation.mp4 |
162.79Мб |
015 Ensembles Intro.en.srt |
8.47Кб |
015 Ensembles Intro.mp4 |
17.75Мб |
015 Hyperparameters.en.srt |
21.76Кб |
015 Hyperparameters.mp4 |
103.18Мб |
016 Regularization Theory.en.srt |
25.55Кб |
016 Regularization Theory.mp4 |
60.57Мб |
016 Voting Ensembles Theory.en.srt |
9.89Кб |
016 Voting Ensembles Theory.mp4 |
19.95Мб |
017 Generalization Error Sources.en.srt |
20.10Кб |
017 Generalization Error Sources.mp4 |
18.05Мб |
017 Voting Classification Practical.en.srt |
18.73Кб |
017 Voting Classification Practical.mp4 |
89.45Мб |
018 Regularization Practical.en.srt |
13.29Кб |
018 Regularization Practical.mp4 |
75.55Мб |
018 Voting Regression Practical.en.srt |
6.22Кб |
018 Voting Regression Practical.mp4 |
30.41Мб |
019 Bagging and Pasting Theory.en.srt |
14.38Кб |
019 Bagging and Pasting Theory.mp4 |
33.06Мб |
019 Grid and Randomized Search.en.srt |
46.53Кб |
019 Grid and Randomized Search.mp4 |
283.66Мб |
020 Bagging and Pasting Classification Practical.en.srt |
14.21Кб |
020 Bagging and Pasting Classification Practical.mp4 |
71.07Мб |
020 Handling Missing Values.en.srt |
46.92Кб |
020 Handling Missing Values.mp4 |
255.98Мб |
021 Bagging and Pasting Regression Practical.en.srt |
11.60Кб |
021 Bagging and Pasting Regression Practical.mp4 |
60.35Мб |
021 Feature Scaling Theory.en.srt |
31.18Кб |
021 Feature Scaling Theory.mp4 |
62.30Мб |
022 AdaBoost Theory.en.srt |
16.55Кб |
022 AdaBoost Theory.mp4 |
35.04Мб |
022 Feature Scaling Practical.en.srt |
31.60Кб |
022 Feature Scaling Practical.mp4 |
162.01Мб |
023 AdaBoost Classification Practical.en.srt |
18.50Кб |
023 AdaBoost Classification Practical.mp4 |
112.87Мб |
023 Text and Categorical Data.en.srt |
51.23Кб |
023 Text and Categorical Data.mp4 |
301.01Мб |
024 AdaBoost Regression Practical.en.srt |
6.60Кб |
024 AdaBoost Regression Practical.mp4 |
35.16Мб |
024 Transformation Pipelines.en.srt |
21.86Кб |
024 Transformation Pipelines.mp4 |
97.62Мб |
025 Custom Transformers.en.srt |
14.37Кб |
025 Custom Transformers.mp4 |
21.70Мб |
025 Gradient Boosting Theory.en.srt |
18.64Кб |
025 Gradient Boosting Theory.mp4 |
45.71Мб |
026 Column Specific Pipelines.en.srt |
21.66Кб |
026 Column Specific Pipelines.mp4 |
122.59Мб |
026 Gradient Boosting Classification Pratical.en.srt |
13.30Кб |
026 Gradient Boosting Classification Pratical.mp4 |
73.77Мб |
027 Gradient Boosting Regression Practical.en.srt |
10.44Кб |
027 Gradient Boosting Regression Practical.mp4 |
57.80Мб |
027 Over and Undersampling.en.srt |
62.50Кб |
027 Over and Undersampling.mp4 |
279.74Мб |
028 Feature Importance.en.srt |
47.84Кб |
028 Feature Importance.mp4 |
224.44Мб |
028 Stacking and Blending Theory.en.srt |
11.38Кб |
028 Stacking and Blending Theory.mp4 |
26.18Мб |
029 Saving and Loading Models and Pipelines.en.srt |
22.56Кб |
029 Saving and Loading Models and Pipelines.mp4 |
113.84Мб |
029 Stacking Classifiers Practical.en.srt |
20.19Кб |
029 Stacking Classifiers Practical.mp4 |
107.77Мб |
030 Post Prototyping.en.srt |
35.06Кб |
030 Post Prototyping.mp4 |
86.18Мб |
030 Stacking Regression Practical.en.srt |
10.41Кб |
030 Stacking Regression Practical.mp4 |
58.21Мб |
031 Dimensionality Reduction Intro.en.srt |
25.38Кб |
031 Dimensionality Reduction Intro.mp4 |
80.37Мб |
031 Multilabel Classification.en.srt |
24.50Кб |
031 Multilabel Classification.mp4 |
152.98Мб |
032 PCA Theory.en.srt |
43.72Кб |
032 PCA Theory.mp4 |
114.42Мб |
032 Polynomial Features.en.srt |
21.92Кб |
032 Polynomial Features.mp4 |
97.64Мб |
033 PCA Practical.en.srt |
42.17Кб |
033 PCA Practical.mp4 |
220.99Мб |
033 SVM Theory.en.srt |
59.06Кб |
033 SVM Theory.mp4 |
141.35Мб |
034 NNMF Theory.en.srt |
10.68Кб |
034 NNMF Theory.mp4 |
21.48Мб |
034 SVM Classification Practical.en.srt |
47.11Кб |
034 SVM Classification Practical.mp4 |
266.01Мб |
035 KNN Classification Theory.en.srt |
26.20Кб |
035 KNN Classification Theory.mp4 |
58.81Мб |
035 NNMF Practical.en.srt |
23.78Кб |
035 NNMF Practical.mp4 |
114.14Мб |
036 Isomap Theory.en.srt |
7.00Кб |
036 Isomap Theory.mp4 |
14.18Мб |
036 KNN Classification Practical.en.srt |
21.74Кб |
036 KNN Classification Practical.mp4 |
111.56Мб |
037 Decision Tree Classifier Theory.en.srt |
49.33Кб |
037 Decision Tree Classifier Theory.mp4 |
163.50Мб |
037 Isomap Practical.en.srt |
24.86Кб |
037 Isomap Practical.mp4 |
120.87Мб |
038 Decision Tree Pruning.en.srt |
5.03Кб |
038 Decision Tree Pruning.mp4 |
5.78Мб |
038 LLE Theory.en.srt |
16.17Кб |
038 LLE Theory.mp4 |
39.73Мб |
039 Decision Tree Practical.en.srt |
22.30Кб |
039 Decision Tree Practical.mp4 |
108.49Мб |
039 LLE Practical.en.srt |
18.84Кб |
039 LLE Practical.mp4 |
111.13Мб |
040 Random Forest Theory.en.srt |
12.57Кб |
040 Random Forest Theory.mp4 |
53.90Мб |
040 t-SNE Theory.en.srt |
24.85Кб |
040 t-SNE Theory.mp4 |
66.26Мб |
041 Random Forest Practical.en.srt |
13.85Кб |
041 Random Forest Practical.mp4 |
65.82Мб |
041 t-SNE Practical.en.srt |
21.76Кб |
041 t-SNE Practical.mp4 |
113.48Мб |
042 Naive Bayes Theory.en.srt |
13.11Кб |
042 Naive Bayes Theory.mp4 |
26.35Мб |
042 Unsupervised Learning Intro.en.srt |
10.97Кб |
042 Unsupervised Learning Intro.mp4 |
19.28Мб |
043 KMeans Theory.en.srt |
16.43Кб |
043 KMeans Theory.mp4 |
31.67Мб |
043 Naive Bayes Practical.en.srt |
12.45Кб |
043 Naive Bayes Practical.mp4 |
63.73Мб |
044 How to Choose a Model.en.srt |
17.18Кб |
044 How to Choose a Model.mp4 |
46.08Мб |
044 KMeans Practical.en.srt |
25.36Кб |
044 KMeans Practical.mp4 |
126.27Мб |
045 Choosing Number of Clusters Theory.en.srt |
29.88Кб |
045 Choosing Number of Clusters Theory.mp4 |
64.35Мб |
046 Choosing Number of Clusters Practical.en.srt |
16.46Кб |
046 Choosing Number of Clusters Practical.mp4 |
112.91Мб |
047 DBSCAN Theory.en.srt |
15.61Кб |
047 DBSCAN Theory.mp4 |
33.55Мб |
048 DBSCAN Practical.en.srt |
14.80Кб |
048 DBSCAN Practical.mp4 |
61.40Мб |
049 Gaussian Mixture Theory.en.srt |
23.74Кб |
049 Gaussian Mixture Theory.mp4 |
48.92Мб |
050 Gaussian Mixture Practical.en.srt |
23.69Кб |
050 Gaussian Mixture Practical.mp4 |
126.40Мб |
051 Semi-Supervised Theory.en.srt |
16.91Кб |
051 Semi-Supervised Theory.mp4 |
14.83Мб |
052 Semi-Supervised Practical.en.srt |
19.15Кб |
052 Semi-Supervised Practical.mp4 |
96.44Мб |
1 |
1.08Кб |
10 |
962.26Кб |
100 |
603.29Кб |
11 |
508.83Кб |
12 |
216.03Кб |
13 |
1018.64Кб |
14 |
24.14Кб |
15 |
536.58Кб |
16 |
669.37Кб |
17 |
332.87Кб |
18 |
613.78Кб |
19 |
743.11Кб |
2 |
566б |
20 |
419.06Кб |
21 |
46.24Кб |
22 |
131.26Кб |
23 |
204.85Кб |
24 |
598.41Кб |
25 |
883.30Кб |
26 |
164.50Кб |
27 |
533.09Кб |
28 |
92.54Кб |
29 |
130.88Кб |
3 |
458.98Кб |
30 |
446.83Кб |
31 |
893.01Кб |
32 |
522.45Кб |
33 |
230.64Кб |
34 |
839.27Кб |
35 |
768.08Кб |
36 |
89.63Кб |
37 |
367.29Кб |
38 |
387.87Кб |
39 |
573.42Кб |
4 |
15.52Кб |
40 |
559.35Кб |
41 |
342.83Кб |
42 |
842.33Кб |
43 |
177.69Кб |
44 |
770.39Кб |
45 |
375.79Кб |
46 |
645.67Кб |
47 |
830.77Кб |
48 |
464.01Кб |
49 |
233.19Кб |
5 |
568.82Кб |
50 |
953.43Кб |
51 |
753.92Кб |
52 |
182.54Кб |
53 |
663.70Кб |
54 |
279.91Кб |
55 |
718.23Кб |
56 |
619.31Кб |
57 |
437.25Кб |
58 |
665.93Кб |
59 |
190.04Кб |
6 |
12.38Кб |
60 |
808.74Кб |
61 |
204.60Кб |
62 |
682.98Кб |
63 |
106.55Кб |
64 |
988.71Кб |
65 |
84.86Кб |
66 |
938.04Кб |
67 |
291.98Кб |
68 |
950.76Кб |
69 |
277.86Кб |
7 |
988.90Кб |
70 |
70.69Кб |
71 |
561.06Кб |
72 |
856.75Кб |
73 |
979.22Кб |
74 |
457.45Кб |
75 |
555.80Кб |
76 |
963.34Кб |
77 |
334.50Кб |
78 |
66.36Кб |
79 |
606.67Кб |
8 |
925.09Кб |
80 |
419.17Кб |
81 |
666.14Кб |
82 |
836.88Кб |
83 |
23.13Кб |
84 |
311.42Кб |
85 |
321.76Кб |
86 |
537.40Кб |
87 |
471.28Кб |
88 |
532.28Кб |
89 |
54.49Кб |
9 |
444.31Кб |
90 |
737.84Кб |
91 |
974.16Кб |
92 |
40.97Кб |
93 |
256.75Кб |
94 |
188.48Кб |
95 |
188.22Кб |
96 |
177.40Кб |
97 |
654.15Кб |
98 |
836.54Кб |
99 |
993.87Кб |
TutsNode.com.txt |
63б |