Общая информация
Название Python Machine Learning Bootcamp
Тип
Размер 8.63Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 2.79Кб
001 Regression Intro.en.srt 25.10Кб
001 Regression Intro.mp4 22.98Мб
001 Setup & Installation.en.srt 14.74Кб
001 Setup & Installation.mp4 79.19Мб
001 Supervised Learning Intro.en.srt 10.54Кб
001 Supervised Learning Intro.mp4 9.41Мб
002 Classification Intro.en.srt 10.07Кб
002 Classification Intro.mp4 20.48Мб
002 Linear Regression Practical.en.srt 29.49Кб
002 Linear Regression Practical.mp4 142.48Мб
002 Loading Datasets.en.srt 12.70Кб
002 Loading Datasets.mp4 15.82Мб
003 Data Format.en.srt 11.82Кб
003 Data Format.mp4 35.45Мб
003 Logistic Regression Theory.en.srt 27.86Кб
003 Logistic Regression Theory.mp4 56.33Мб
003 Regularized Linear Regression Practical.en.srt 33.74Кб
003 Regularized Linear Regression Practical.mp4 140.67Мб
004 Boston Housing Intro.en.srt 27.22Кб
004 Boston Housing Intro.mp4 166.06Мб
004 Gradient Descent.en.srt 16.86Кб
004 Gradient Descent.mp4 37.93Мб
004 Train Test Splitting.en.srt 20.58Кб
004 Train Test Splitting.mp4 80.63Мб
005 Polynomial Regression.en.srt 26.33Кб
005 Polynomial Regression.mp4 121.95Мб
005 Stratified Splitting.en.srt 19.39Кб
005 Stratified Splitting.mp4 86.67Мб
005 Types of Classification Problems.en.srt 19.07Кб
005 Types of Classification Problems.mp4 44.07Мб
006 Creating and Training a Binary Classifier.en.srt 36.72Кб
006 Creating and Training a Binary Classifier.mp4 212.03Мб
006 Data Preparation and Exploration.en.srt 34.58Кб
006 Data Preparation and Exploration.mp4 185.10Мб
006 Regression Losses and Learning Rates.en.srt 17.38Кб
006 Regression Losses and Learning Rates.mp4 14.36Мб
007 Creating and Training a Multiclass Classifier.en.srt 17.45Кб
007 Creating and Training a Multiclass Classifier.mp4 99.91Мб
007 SGD Regression.en.srt 32.14Кб
007 SGD Regression.mp4 177.57Мб
008 Evaluating Classifiers Theory.en.srt 15.53Кб
008 Evaluating Classifiers Theory.mp4 30.94Мб
008 KNN Regression Theory.en.srt 4.71Кб
008 KNN Regression Theory.mp4 12.03Мб
009 KNN Regression Practical.en.srt 11.83Кб
009 KNN Regression Practical.mp4 83.25Мб
009 Precision and Recall Theory.en.srt 25.05Кб
009 Precision and Recall Theory.mp4 53.03Мб
010 ROC, Confusion Matrix, and Support Theory.en.srt 8.55Кб
010 ROC, Confusion Matrix, and Support Theory.mp4 17.96Мб
010 SVM Regression Theory.en.srt 7.63Кб
010 SVM Regression Theory.mp4 21.69Мб
011 MNIST Data Set Intro.en.srt 9.46Кб
011 MNIST Data Set Intro.mp4 28.59Мб
011 SVM Regression Practical.en.srt 13.41Кб
011 SVM Regression Practical.mp4 85.83Мб
012 Decision Tree Regression Theory.en.srt 9.61Кб
012 Decision Tree Regression Theory.mp4 20.54Мб
012 Evaluating Classifiers Practical.en.srt 23.55Кб
012 Evaluating Classifiers Practical.mp4 115.80Мб
013 Decision Tree and Random Forest Regression Practical.en.srt 17.30Кб
013 Decision Tree and Random Forest Regression Practical.mp4 101.25Мб
013 Validation Set.en.srt 6.76Кб
013 Validation Set.mp4 33.46Мб
014 Additional Regression Metrics.en.srt 10.41Кб
014 Additional Regression Metrics.mp4 16.82Мб
014 Cross-Validation.en.srt 36.91Кб
014 Cross-Validation.mp4 162.79Мб
015 Ensembles Intro.en.srt 8.47Кб
015 Ensembles Intro.mp4 17.75Мб
015 Hyperparameters.en.srt 21.76Кб
015 Hyperparameters.mp4 103.18Мб
016 Regularization Theory.en.srt 25.55Кб
016 Regularization Theory.mp4 60.57Мб
016 Voting Ensembles Theory.en.srt 9.89Кб
016 Voting Ensembles Theory.mp4 19.95Мб
017 Generalization Error Sources.en.srt 20.10Кб
017 Generalization Error Sources.mp4 18.05Мб
017 Voting Classification Practical.en.srt 18.73Кб
017 Voting Classification Practical.mp4 89.45Мб
018 Regularization Practical.en.srt 13.29Кб
018 Regularization Practical.mp4 75.55Мб
018 Voting Regression Practical.en.srt 6.22Кб
018 Voting Regression Practical.mp4 30.41Мб
019 Bagging and Pasting Theory.en.srt 14.38Кб
019 Bagging and Pasting Theory.mp4 33.06Мб
019 Grid and Randomized Search.en.srt 46.53Кб
019 Grid and Randomized Search.mp4 283.66Мб
020 Bagging and Pasting Classification Practical.en.srt 14.21Кб
020 Bagging and Pasting Classification Practical.mp4 71.07Мб
020 Handling Missing Values.en.srt 46.92Кб
020 Handling Missing Values.mp4 255.98Мб
021 Bagging and Pasting Regression Practical.en.srt 11.60Кб
021 Bagging and Pasting Regression Practical.mp4 60.35Мб
021 Feature Scaling Theory.en.srt 31.18Кб
021 Feature Scaling Theory.mp4 62.30Мб
022 AdaBoost Theory.en.srt 16.55Кб
022 AdaBoost Theory.mp4 35.04Мб
022 Feature Scaling Practical.en.srt 31.60Кб
022 Feature Scaling Practical.mp4 162.01Мб
023 AdaBoost Classification Practical.en.srt 18.50Кб
023 AdaBoost Classification Practical.mp4 112.87Мб
023 Text and Categorical Data.en.srt 51.23Кб
023 Text and Categorical Data.mp4 301.01Мб
024 AdaBoost Regression Practical.en.srt 6.60Кб
024 AdaBoost Regression Practical.mp4 35.16Мб
024 Transformation Pipelines.en.srt 21.86Кб
024 Transformation Pipelines.mp4 97.62Мб
025 Custom Transformers.en.srt 14.37Кб
025 Custom Transformers.mp4 21.70Мб
025 Gradient Boosting Theory.en.srt 18.64Кб
025 Gradient Boosting Theory.mp4 45.71Мб
026 Column Specific Pipelines.en.srt 21.66Кб
026 Column Specific Pipelines.mp4 122.59Мб
026 Gradient Boosting Classification Pratical.en.srt 13.30Кб
026 Gradient Boosting Classification Pratical.mp4 73.77Мб
027 Gradient Boosting Regression Practical.en.srt 10.44Кб
027 Gradient Boosting Regression Practical.mp4 57.80Мб
027 Over and Undersampling.en.srt 62.50Кб
027 Over and Undersampling.mp4 279.74Мб
028 Feature Importance.en.srt 47.84Кб
028 Feature Importance.mp4 224.44Мб
028 Stacking and Blending Theory.en.srt 11.38Кб
028 Stacking and Blending Theory.mp4 26.18Мб
029 Saving and Loading Models and Pipelines.en.srt 22.56Кб
029 Saving and Loading Models and Pipelines.mp4 113.84Мб
029 Stacking Classifiers Practical.en.srt 20.19Кб
029 Stacking Classifiers Practical.mp4 107.77Мб
030 Post Prototyping.en.srt 35.06Кб
030 Post Prototyping.mp4 86.18Мб
030 Stacking Regression Practical.en.srt 10.41Кб
030 Stacking Regression Practical.mp4 58.21Мб
031 Dimensionality Reduction Intro.en.srt 25.38Кб
031 Dimensionality Reduction Intro.mp4 80.37Мб
031 Multilabel Classification.en.srt 24.50Кб
031 Multilabel Classification.mp4 152.98Мб
032 PCA Theory.en.srt 43.72Кб
032 PCA Theory.mp4 114.42Мб
032 Polynomial Features.en.srt 21.92Кб
032 Polynomial Features.mp4 97.64Мб
033 PCA Practical.en.srt 42.17Кб
033 PCA Practical.mp4 220.99Мб
033 SVM Theory.en.srt 59.06Кб
033 SVM Theory.mp4 141.35Мб
034 NNMF Theory.en.srt 10.68Кб
034 NNMF Theory.mp4 21.48Мб
034 SVM Classification Practical.en.srt 47.11Кб
034 SVM Classification Practical.mp4 266.01Мб
035 KNN Classification Theory.en.srt 26.20Кб
035 KNN Classification Theory.mp4 58.81Мб
035 NNMF Practical.en.srt 23.78Кб
035 NNMF Practical.mp4 114.14Мб
036 Isomap Theory.en.srt 7.00Кб
036 Isomap Theory.mp4 14.18Мб
036 KNN Classification Practical.en.srt 21.74Кб
036 KNN Classification Practical.mp4 111.56Мб
037 Decision Tree Classifier Theory.en.srt 49.33Кб
037 Decision Tree Classifier Theory.mp4 163.50Мб
037 Isomap Practical.en.srt 24.86Кб
037 Isomap Practical.mp4 120.87Мб
038 Decision Tree Pruning.en.srt 5.03Кб
038 Decision Tree Pruning.mp4 5.78Мб
038 LLE Theory.en.srt 16.17Кб
038 LLE Theory.mp4 39.73Мб
039 Decision Tree Practical.en.srt 22.30Кб
039 Decision Tree Practical.mp4 108.49Мб
039 LLE Practical.en.srt 18.84Кб
039 LLE Practical.mp4 111.13Мб
040 Random Forest Theory.en.srt 12.57Кб
040 Random Forest Theory.mp4 53.90Мб
040 t-SNE Theory.en.srt 24.85Кб
040 t-SNE Theory.mp4 66.26Мб
041 Random Forest Practical.en.srt 13.85Кб
041 Random Forest Practical.mp4 65.82Мб
041 t-SNE Practical.en.srt 21.76Кб
041 t-SNE Practical.mp4 113.48Мб
042 Naive Bayes Theory.en.srt 13.11Кб
042 Naive Bayes Theory.mp4 26.35Мб
042 Unsupervised Learning Intro.en.srt 10.97Кб
042 Unsupervised Learning Intro.mp4 19.28Мб
043 KMeans Theory.en.srt 16.43Кб
043 KMeans Theory.mp4 31.67Мб
043 Naive Bayes Practical.en.srt 12.45Кб
043 Naive Bayes Practical.mp4 63.73Мб
044 How to Choose a Model.en.srt 17.18Кб
044 How to Choose a Model.mp4 46.08Мб
044 KMeans Practical.en.srt 25.36Кб
044 KMeans Practical.mp4 126.27Мб
045 Choosing Number of Clusters Theory.en.srt 29.88Кб
045 Choosing Number of Clusters Theory.mp4 64.35Мб
046 Choosing Number of Clusters Practical.en.srt 16.46Кб
046 Choosing Number of Clusters Practical.mp4 112.91Мб
047 DBSCAN Theory.en.srt 15.61Кб
047 DBSCAN Theory.mp4 33.55Мб
048 DBSCAN Practical.en.srt 14.80Кб
048 DBSCAN Practical.mp4 61.40Мб
049 Gaussian Mixture Theory.en.srt 23.74Кб
049 Gaussian Mixture Theory.mp4 48.92Мб
050 Gaussian Mixture Practical.en.srt 23.69Кб
050 Gaussian Mixture Practical.mp4 126.40Мб
051 Semi-Supervised Theory.en.srt 16.91Кб
051 Semi-Supervised Theory.mp4 14.83Мб
052 Semi-Supervised Practical.en.srt 19.15Кб
052 Semi-Supervised Practical.mp4 96.44Мб
1 1.08Кб
10 962.26Кб
100 603.29Кб
11 508.83Кб
12 216.03Кб
13 1018.64Кб
14 24.14Кб
15 536.58Кб
16 669.37Кб
17 332.87Кб
18 613.78Кб
19 743.11Кб
2 566б
20 419.06Кб
21 46.24Кб
22 131.26Кб
23 204.85Кб
24 598.41Кб
25 883.30Кб
26 164.50Кб
27 533.09Кб
28 92.54Кб
29 130.88Кб
3 458.98Кб
30 446.83Кб
31 893.01Кб
32 522.45Кб
33 230.64Кб
34 839.27Кб
35 768.08Кб
36 89.63Кб
37 367.29Кб
38 387.87Кб
39 573.42Кб
4 15.52Кб
40 559.35Кб
41 342.83Кб
42 842.33Кб
43 177.69Кб
44 770.39Кб
45 375.79Кб
46 645.67Кб
47 830.77Кб
48 464.01Кб
49 233.19Кб
5 568.82Кб
50 953.43Кб
51 753.92Кб
52 182.54Кб
53 663.70Кб
54 279.91Кб
55 718.23Кб
56 619.31Кб
57 437.25Кб
58 665.93Кб
59 190.04Кб
6 12.38Кб
60 808.74Кб
61 204.60Кб
62 682.98Кб
63 106.55Кб
64 988.71Кб
65 84.86Кб
66 938.04Кб
67 291.98Кб
68 950.76Кб
69 277.86Кб
7 988.90Кб
70 70.69Кб
71 561.06Кб
72 856.75Кб
73 979.22Кб
74 457.45Кб
75 555.80Кб
76 963.34Кб
77 334.50Кб
78 66.36Кб
79 606.67Кб
8 925.09Кб
80 419.17Кб
81 666.14Кб
82 836.88Кб
83 23.13Кб
84 311.42Кб
85 321.76Кб
86 537.40Кб
87 471.28Кб
88 532.28Кб
89 54.49Кб
9 444.31Кб
90 737.84Кб
91 974.16Кб
92 40.97Кб
93 256.75Кб
94 188.48Кб
95 188.22Кб
96 177.40Кб
97 654.15Кб
98 836.54Кб
99 993.87Кб
TutsNode.com.txt 63б
Статистика распространения по странам
Тайланд (TH) 1
Всего 1
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент