Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
0. (1Hack.Us) Premium Tutorials-Guides-Articles _ Community based Forum.url |
377б |
01. 01 HS Intro Dan And Cezanne V2-2K8KFEUxNbw.en.vtt |
1.66Кб |
01. 01 HS Intro Dan And Cezanne V2-2K8KFEUxNbw.mp4 |
6.00Мб |
01. 01 HS Intro Dan And Cezanne V2-2K8KFEUxNbw.zh-CN.vtt |
1.46Кб |
01. 04 How Does Amazon Decide Which Features To Work On-KYG_LWDhg4I.en.vtt |
7.88Кб |
01. 04 How Does Amazon Decide Which Features To Work On-KYG_LWDhg4I.mp4 |
60.52Мб |
01. 04 How Does Amazon Decide Which Features To Work On-KYG_LWDhg4I.zh-CN.vtt |
6.55Кб |
01. 05 Can You Explain The Idea Behind The GitHub Respository-Hk9ChDtv_nQ.en.vtt |
8.57Кб |
01. 05 Can You Explain The Idea Behind The GitHub Respository-Hk9ChDtv_nQ.mp4 |
64.46Мб |
01. 05 Can You Explain The Idea Behind The GitHub Respository-Hk9ChDtv_nQ.zh-CN.vtt |
6.91Кб |
01. 06 Does Sagemaker Work With Certain Products Or Use Cases-9HSJp_i9LFw.en.vtt |
4.04Кб |
01. 06 Does Sagemaker Work With Certain Products Or Use Cases-9HSJp_i9LFw.mp4 |
40.97Мб |
01. 06 Does Sagemaker Work With Certain Products Or Use Cases-9HSJp_i9LFw.zh-CN.vtt |
3.40Кб |
01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.en.vtt |
2.17Кб |
01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.mp4 |
2.20Мб |
01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.zh-CN.vtt |
1.69Кб |
01. 1 Weight Initialization V1-Ehc60si91Wg.en.vtt |
9.23Кб |
01. 1 Weight Initialization V1-Ehc60si91Wg.mp4 |
11.60Мб |
01. 1 Weight Initialization V1-Ehc60si91Wg.pt-BR.vtt |
8.92Кб |
01. 1 Weight Initialization V1-Ehc60si91Wg.zh-CN.vtt |
7.92Кб |
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.ar.vtt |
2.55Кб |
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.en.vtt |
2.00Кб |
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.mp4 |
7.50Мб |
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.pt-BR.vtt |
1.77Кб |
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.zh-CN.vtt |
1.83Кб |
01. Apresentando Alexis-38ExGpdyvJI.en.vtt |
694б |
01. Apresentando Alexis-38ExGpdyvJI.mp4 |
2.23Мб |
01. Apresentando Alexis-38ExGpdyvJI.pt-BR.vtt |
599б |
01. Apresentando Alexis-38ExGpdyvJI.zh-CN.vtt |
615б |
01. A Repository_s History - Intro-UBmg3syQS0E.ar.vtt |
4.91Кб |
01. A Repository_s History - Intro-UBmg3syQS0E.en.vtt |
3.89Кб |
01. A Repository_s History - Intro-UBmg3syQS0E.mp4 |
12.31Мб |
01. A Repository_s History - Intro-UBmg3syQS0E.pt-BR.vtt |
4.13Кб |
01. A Repository_s History - Intro-UBmg3syQS0E.zh-CN.vtt |
3.46Кб |
01. Arvato Final Project-qBR6A0IQXEE.en.vtt |
5.37Кб |
01. Arvato Final Project-qBR6A0IQXEE.mp4 |
26.44Мб |
01. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt |
5.72Кб |
01. Arvato Final Project-qBR6A0IQXEE.zh-CN.vtt |
4.86Кб |
01. Autoencoders.html |
7.08Кб |
01. Autoencoders 01 Autoencoders V2 RENDER V2-a5zHMWOq0fc.en.vtt |
3.87Кб |
01. Autoencoders 01 Autoencoders V2 RENDER V2-a5zHMWOq0fc.mp4 |
5.61Мб |
01. Autoencoders 01 Autoencoders V2 RENDER V2-a5zHMWOq0fc.pt-BR.vtt |
4.08Кб |
01. AWS Overview.html |
8.52Кб |
01. Capstone project.html |
5.16Кб |
01. Capstone Proposal.html |
5.18Кб |
01. Congratulations!.html |
6.05Кб |
01. Creating New Repositories - Intro-KT163BkqIeg.ar.vtt |
2.38Кб |
01. Creating New Repositories - Intro-KT163BkqIeg.en.vtt |
1.82Кб |
01. Creating New Repositories - Intro-KT163BkqIeg.mp4 |
6.80Мб |
01. Creating New Repositories - Intro-KT163BkqIeg.pt-BR.vtt |
1.91Кб |
01. Creating New Repositories - Intro-KT163BkqIeg.zh-CN.vtt |
1.68Кб |
01. Deploying a Model in SageMaker.html |
9.05Кб |
01. Deploying A Model With Sagemakerv2 RENDER V1 V2-nJCc4_9-iAQ.en.vtt |
4.39Кб |
01. Deploying A Model With Sagemakerv2 RENDER V1 V2-nJCc4_9-iAQ.mp4 |
15.43Мб |
01. Deploying A Model With Sagemakerv2 RENDER V1 V2-nJCc4_9-iAQ.zh-CN.vtt |
3.87Кб |
01. Deploying a Sentiment Analysis Model-LWcJtUKVkzo.en.vtt |
2.60Кб |
01. Deploying a Sentiment Analysis Model-LWcJtUKVkzo.mp4 |
4.18Мб |
01. Deploying a Sentiment Analysis Model-LWcJtUKVkzo.zh-CN.vtt |
2.04Кб |
01. Deployment Project.html |
5.96Кб |
01. FAQ.html |
6.12Кб |
01. Fraud Detection.html |
7.69Кб |
01. Get Opportunities with LinkedIn.html |
11.21Кб |
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.ar.vtt |
4.78Кб |
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.en.vtt |
3.54Кб |
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.mp4 |
12.74Мб |
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.pt-BR.vtt |
3.47Кб |
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.zh-CN.vtt |
3.20Кб |
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.ar.vtt |
2.97Кб |
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.en.vtt |
2.22Кб |
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.mp4 |
7.20Мб |
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.pt-BR.vtt |
2.28Кб |
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.zh-CN.vtt |
1.91Кб |
01. Hyperparameter Tuning.html |
7.98Кб |
01. Implementing RNNs.html |
6.70Кб |
01. Interview Segment Developing SageMaker.html |
8.19Кб |
01. Intro.html |
5.96Кб |
01. Intro.html |
6.25Кб |
01. Intro.html |
6.04Кб |
01. Intro.html |
5.53Кб |
01. Intro.html |
5.37Кб |
01. Introducing Alexis.html |
10.79Кб |
01. Introducing Cezanne _ Dan.html |
9.16Кб |
01. Introduction.html |
8.56Кб |
01. Introduction.html |
7.12Кб |
01. Introduction.html |
11.80Кб |
01. Introduction.html |
13.77Кб |
01. Introduction.html |
9.72Кб |
01. Introduction.html |
14.30Кб |
01. Introduction-5DfFaAl1Wmc.en.vtt |
1.71Кб |
01. Introduction-5DfFaAl1Wmc.mp4 |
8.22Мб |
01. Introduction-5DfFaAl1Wmc.pt-BR.vtt |
1.76Кб |
01. Introduction-5DfFaAl1Wmc.zh-CN.vtt |
1.56Кб |
01. Introduction to Amazon SageMaker.html |
8.37Кб |
01. Introduction to GPU Workspaces.html |
16.26Кб |
01. Introduction To Software Engineering-7kphieW4yl4.en.vtt |
3.15Кб |
01. Introduction To Software Engineering-7kphieW4yl4.mp4 |
14.89Мб |
01. Introduction To Software Engineering-7kphieW4yl4.pt-BR.vtt |
3.50Кб |
01. Introduction To Software Engineering-7kphieW4yl4.zh-CN.vtt |
2.83Кб |
01. L2 01 Fraud Detection V1 RENDER V2-zDnyR5Tci5M.en.vtt |
2.73Кб |
01. L2 01 Fraud Detection V1 RENDER V2-zDnyR5Tci5M.mp4 |
12.37Мб |
01. L2 01 Fraud Detection V1 RENDER V2-zDnyR5Tci5M.zh-CN.vtt |
2.31Кб |
01. L2 01 Intro V1 V1-z7v7oa--W48.en.vtt |
1.22Кб |
01. L2 01 Intro V1 V1-z7v7oa--W48.mp4 |
6.57Мб |
01. L2 01 Intro V1 V1-z7v7oa--W48.pt-BR.vtt |
1.39Кб |
01. L2 01 Intro V1 V1-z7v7oa--W48.zh-CN.vtt |
1.10Кб |
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.en.vtt |
685б |
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.mp4 |
3.87Мб |
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.pt-BR.vtt |
871б |
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.zh-CN.vtt |
660б |
01. L3 00 Intro V2-g_GYZpcVcFE.en.vtt |
797б |
01. L3 00 Intro V2-g_GYZpcVcFE.mp4 |
2.79Мб |
01. L3 00 Intro V2-g_GYZpcVcFE.zh-CN.vtt |
718б |
01. L3 03 Time Series Forecasting-U8k2Fl2zgJ8.en.vtt |
3.00Кб |
01. L3 03 Time Series Forecasting-U8k2Fl2zgJ8.mp4 |
5.66Мб |
01. L4 00 Intro V2-ohVX3RUTghg.en.vtt |
988б |
01. L4 00 Intro V2-ohVX3RUTghg.mp4 |
3.70Мб |
01. L4 00 Intro V2-ohVX3RUTghg.zh-CN.vtt |
830б |
01. L4 Intro V2--PGMIIXFCgg.en.vtt |
1.95Кб |
01. L4 Intro V2--PGMIIXFCgg.mp4 |
8.56Мб |
01. L4 Intro V2--PGMIIXFCgg.pt-BR.vtt |
2.20Кб |
01. L4 Intro V2--PGMIIXFCgg.zh-CN.vtt |
1.80Кб |
01. L5 00 Intro V2-7wI168JzBiU.en.vtt |
1.19Кб |
01. L5 00 Intro V2-7wI168JzBiU.mp4 |
3.13Мб |
01. L5 00 Intro V2-7wI168JzBiU.zh-CN.vtt |
984б |
01. M4L31 HSA Implementing RNNs V2 RENDERv1 V2-BHoiwB61ays.en.vtt |
2.05Кб |
01. M4L31 HSA Implementing RNNs V2 RENDERv1 V2-BHoiwB61ays.mp4 |
5.68Мб |
01. M4L31 HSA Implementing RNNs V2 RENDERv1 V2-BHoiwB61ays.pt-BR.vtt |
2.17Кб |
01. M4L31 HSA Implementing RNNs V2 RENDERv1 V2-BHoiwB61ays.zh-CN.vtt |
1.75Кб |
01. Natural Language Processing-UQBxJzoCp-I.en.vtt |
1.17Кб |
01. Natural Language Processing-UQBxJzoCp-I.mp4 |
4.63Мб |
01. Natural Language Processing-UQBxJzoCp-I.pt-BR.vtt |
1.30Кб |
01. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt |
1.04Кб |
01. NLP and Pipelines.html |
6.45Кб |
01. Pre-Notebook Custom Models _ Moon Data.html |
9.71Кб |
01. Project Overview.html |
8.24Кб |
01. Project Overview.html |
8.72Кб |
01. Prove Your Skills With GitHub.html |
11.15Кб |
01. Sentiment RNN, Introduction.html |
6.75Кб |
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.mp4 |
6.40Мб |
01. Time-Series Forecasting.html |
6.86Кб |
01. Transfer Learning.html |
6.16Кб |
01. Transfer Learning-yfPEROi3SPU.en.vtt |
2.54Кб |
01. Transfer Learning-yfPEROi3SPU.mp4 |
5.70Мб |
01. Transfer Learning-yfPEROi3SPU.pt-BR.vtt |
2.41Кб |
01. Transfer Learning-yfPEROi3SPU.zh-CN.vtt |
2.27Кб |
01. Updating a Model.html |
7.94Кб |
01. Weight Initialization.html |
6.38Кб |
01. Welcome!.html |
8.11Кб |
01. Welcome.html |
6.28Кб |
01. Welcome To Deployment-jQ2IZzga8Nw.en.vtt |
1.96Кб |
01. Welcome To Deployment-jQ2IZzga8Nw.mp4 |
6.52Мб |
01. Welcome To Deployment-jQ2IZzga8Nw.zh-CN.vtt |
1.74Кб |
01. Welcome to the Machine Learning Engineer Program _ Projects.html |
9.54Кб |
01. What is Version Control.html |
9.59Кб |
01. Why Network-exjEm9Paszk.ar.vtt |
5.14Кб |
01. Why Network-exjEm9Paszk.en.vtt |
3.40Кб |
01. Why Network-exjEm9Paszk.es-MX.vtt |
3.20Кб |
01. Why Network-exjEm9Paszk.ja-JP.vtt |
4.33Кб |
01. Why Network-exjEm9Paszk.mp4 |
17.37Мб |
01. Why Network-exjEm9Paszk.pt-BR.vtt |
3.20Кб |
01. Why Network-exjEm9Paszk.zh-CN.vtt |
3.29Кб |
02. 01 Time Series Notebook V2-OZJu6or8Fl0.en.vtt |
5.49Кб |
02. 01 Time Series Notebook V2-OZJu6or8Fl0.mp4 |
9.75Мб |
02. 01 What Is Amazon Sagemaker-JWRtWcd92E4.en.vtt |
4.14Кб |
02. 01 What Is Amazon Sagemaker-JWRtWcd92E4.mp4 |
17.48Мб |
02. 01 What Is Amazon Sagemaker-JWRtWcd92E4.zh-CN.vtt |
3.46Кб |
02. 02 Time Series Prediction V2-xV5jHLFfJbQ.en.vtt |
10.86Кб |
02. 02 Time Series Prediction V2-xV5jHLFfJbQ.mp4 |
14.80Мб |
02. 02 Time Series Prediction V2-xV5jHLFfJbQ.pt-BR.vtt |
10.48Кб |
02. 02 Time Series Prediction V2-xV5jHLFfJbQ.zh-CN.vtt |
8.72Кб |
02. 02 What Applications Are Enabled By Amazon-iXN30g70PJ0.en.vtt |
2.95Кб |
02. 02 What Applications Are Enabled By Amazon-iXN30g70PJ0.mp4 |
13.55Мб |
02. 02 What Applications Are Enabled By Amazon-iXN30g70PJ0.zh-CN.vtt |
2.21Кб |
02. 03 Why Should Students Gain Skills In Sagemaker And Cloud Services-Hp6qTdiqU3g.en.vtt |
6.29Кб |
02. 03 Why Should Students Gain Skills In Sagemaker And Cloud Services-Hp6qTdiqU3g.mp4 |
41.22Мб |
02. 03 Why Should Students Gain Skills In Sagemaker And Cloud Services-Hp6qTdiqU3g.zh-CN.vtt |
4.97Кб |
02. 07 How Do You Label Data At Scale-G_E5N6k2knA.en.vtt |
3.92Кб |
02. 07 How Do You Label Data At Scale-G_E5N6k2knA.mp4 |
35.77Мб |
02. 07 How Do You Label Data At Scale-G_E5N6k2knA.zh-CN.vtt |
3.09Кб |
02. 08 What_S Your Prediction Of What Sagemaker Will Prioritize In The Next 1-2 Years-git73JsQC1Y.en.vtt |
8.98Кб |
02. 08 What_S Your Prediction Of What Sagemaker Will Prioritize In The Next 1-2 Years-git73JsQC1Y.mp4 |
71.01Мб |
02. 08 What_S Your Prediction Of What Sagemaker Will Prioritize In The Next 1-2 Years-git73JsQC1Y.zh-CN.vtt |
7.27Кб |
02. 18 Moon Data Custom Model V1-vb5ojq8Jw7k.en.vtt |
7.45Кб |
02. 18 Moon Data Custom Model V1-vb5ojq8Jw7k.mp4 |
14.97Мб |
02. 18 Moon Data Custom Model V1-vb5ojq8Jw7k.zh-CN.vtt |
6.19Кб |
02. 2 Constant Weights V1-zR4fECgeZ7Y.en.vtt |
8.99Кб |
02. 2 Constant Weights V1-zR4fECgeZ7Y.mp4 |
9.88Мб |
02. 2 Constant Weights V1-zR4fECgeZ7Y.pt-BR.vtt |
8.30Кб |
02. 2 Constant Weights V1-zR4fECgeZ7Y.zh-CN.vtt |
7.49Кб |
02. 2 Simple Autoencoder V2-KbmfyDNxL5U.en.vtt |
7.78Кб |
02. 2 Simple Autoencoder V2-KbmfyDNxL5U.mp4 |
9.42Мб |
02. 2 Simple Autoencoder V2-KbmfyDNxL5U.pt-BR.vtt |
6.98Кб |
02. A Linear Autoencoder.html |
7.04Кб |
02. Aplicações de CNNs-HrYNL_1SV2Y.en.vtt |
5.37Кб |
02. Aplicações de CNNs-HrYNL_1SV2Y.mp4 |
23.75Мб |
02. Aplicações de CNNs-HrYNL_1SV2Y.pt-BR.vtt |
5.66Кб |
02. Aplicações de CNNs-HrYNL_1SV2Y.zh-CN.vtt |
4.70Кб |
02. Applications of CNNs.html |
16.69Кб |
02. AWS Setup Instructions for Regular account.html |
9.02Кб |
02. AWS Setup Instructions for Regular account.html |
7.41Кб |
02. Boston Housing Example - Deploying the Model.html |
8.45Кб |
02. Building a Sentiment Analysis Model (XGBoost).html |
7.48Кб |
02. Clean and Modular Code.html |
11.50Кб |
02. Constant Weights.html |
7.04Кб |
02. Containment.html |
7.24Кб |
02. Course Overview.html |
7.55Кб |
02. Create A Repo From Scratch.html |
15.70Кб |
02. Deployment L3 C1 V1-0PBsV-SzSlo.en.vtt |
5.22Кб |
02. Deployment L3 C1 V1-0PBsV-SzSlo.mp4 |
11.84Мб |
02. Deployment L3 C1 V1-0PBsV-SzSlo.zh-CN.vtt |
4.39Кб |
02. Deployment L4 C1 V1-nah8kxqp55U.en.vtt |
5.87Кб |
02. Deployment L4 C1 V1-nah8kxqp55U.mp4 |
10.74Мб |
02. Deployment L4 C1 V1-nah8kxqp55U.zh-CN.vtt |
4.73Кб |
02. Deployment L5 C1 V1-dwRkA0ig3uU.en.vtt |
6.36Кб |
02. Deployment L5 C1 V1-dwRkA0ig3uU.mp4 |
10.60Мб |
02. Deployment L5 C1 V1-dwRkA0ig3uU.zh-CN.vtt |
5.16Кб |
02. Displaying A Repository_s Commits.html |
19.46Кб |
02. Forecasting Energy Consumption, Notebook.html |
6.90Кб |
02. Git Add.html |
21.46Кб |
02. How NLP Pipelines Work.html |
6.45Кб |
02. Interview Segment New Features.html |
6.93Кб |
02. Interview Segment What is SageMaker and Why Learn It.html |
11.26Кб |
02. Introduction.html |
8.06Кб |
02. Introduction to Hyperparameter Tuning.html |
7.71Кб |
02. Introduction-Vnj2VNQROtI.ar.vtt |
2.28Кб |
02. Introduction-Vnj2VNQROtI.en.vtt |
1.58Кб |
02. Introduction-Vnj2VNQROtI.ja-JP.vtt |
1.97Кб |
02. Introduction-Vnj2VNQROtI.mp4 |
5.46Мб |
02. Introduction-Vnj2VNQROtI.pt-BR.vtt |
1.79Кб |
02. Introduction-Vnj2VNQROtI.zh-CN.vtt |
1.62Кб |
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.en.vtt |
1.25Кб |
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.mp4 |
3.72Мб |
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.pt-BR.vtt |
1.48Кб |
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.zh-CN.vtt |
1.08Кб |
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.en.vtt |
5.12Кб |
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.mp4 |
17.88Мб |
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.pt-BR.vtt |
5.48Кб |
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.zh-CN.vtt |
4.46Кб |
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.en.vtt |
1.38Кб |
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.mp4 |
6.49Мб |
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.pt-BR.vtt |
1.69Кб |
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.zh-CN.vtt |
1.19Кб |
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.en.vtt |
2.34Кб |
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.mp4 |
8.56Мб |
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.pt-BR.vtt |
2.48Кб |
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.zh-CN.vtt |
1.94Кб |
02. L4 03 Containment V1 V4-FwmT_7fICn0.en.vtt |
4.12Кб |
02. L4 03 Containment V1 V4-FwmT_7fICn0.mp4 |
6.37Мб |
02. L4 03 Containment V1 V4-FwmT_7fICn0.zh-CN.vtt |
3.45Кб |
02. L4 Lesson Overview V2-9WQF-CCNdJ8.en.vtt |
1.47Кб |
02. L4 Lesson Overview V2-9WQF-CCNdJ8.mp4 |
6.41Мб |
02. L4 Lesson Overview V2-9WQF-CCNdJ8.pt-BR.vtt |
1.59Кб |
02. L4 Lesson Overview V2-9WQF-CCNdJ8.zh-CN.vtt |
1.30Кб |
02. Lesson Overview.html |
10.27Кб |
02. Meet Chris-0ccflD9x5WU.ar.vtt |
6.32Кб |
02. Meet Chris-0ccflD9x5WU.en.vtt |
4.89Кб |
02. Meet Chris-0ccflD9x5WU.es-MX.vtt |
4.52Кб |
02. Meet Chris-0ccflD9x5WU.ja-JP.vtt |
5.61Кб |
02. Meet Chris-0ccflD9x5WU.mp4 |
32.54Мб |
02. Meet Chris-0ccflD9x5WU.pt-BR.vtt |
4.47Кб |
02. Meet Chris-0ccflD9x5WU.zh-CN.vtt |
4.41Кб |
02. Modifying The Last Commit.html |
7.51Кб |
02. Moon Data _ Custom Models.html |
6.81Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.ar.vtt |
2.17Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.en.vtt |
1.63Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.mp4 |
4.45Мб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.pt-BR.vtt |
1.78Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.zh-CN.vtt |
1.45Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.ar.vtt |
2.36Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.en.vtt |
1.70Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.mp4 |
2.22Мб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.pt-BR.vtt |
1.77Кб |
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.zh-CN.vtt |
1.51Кб |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt |
1.74Кб |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4 |
1.90Мб |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.pt-BR.vtt |
1.88Кб |
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt |
1.54Кб |
02. Pre-Notebook Payment Fraud Detection.html |
9.69Кб |
02. Pre-Notebook Sentiment RNN.html |
8.95Кб |
02. Procedural vs. Object-Oriented Programming.html |
13.66Кб |
02. Program Structure.html |
9.30Кб |
02. Setting up a Notebook Instance.html |
9.42Кб |
02. Software _ Data Requirements.html |
8.72Кб |
02. Support.html |
5.62Кб |
02. Tagging.html |
18.29Кб |
02. Testing.html |
7.13Кб |
02. Time-Series Prediction.html |
7.45Кб |
02. Troubleshooting Possible Errors.html |
7.02Кб |
02. Useful Layers.html |
6.13Кб |
02. Useful Layers-kn4BN7z3UGQ.en.vtt |
4.01Кб |
02. Useful Layers-kn4BN7z3UGQ.mp4 |
6.83Мб |
02. Useful Layers-kn4BN7z3UGQ.pt-BR.vtt |
3.91Кб |
02. Useful Layers-kn4BN7z3UGQ.zh-CN.vtt |
3.43Кб |
02. Use Your Story to Stand Out.html |
8.75Кб |
02. Version Control In Daily Use.html |
10.95Кб |
02. What_s Ahead.html |
9.58Кб |
02. Workspace Playground.html |
5.78Кб |
02. Workspace Portfolio Exercise.html |
6.71Кб |
03. 01 Transaction Data V1-bF65I3J6aqQ.en.vtt |
5.50Кб |
03. 01 Transaction Data V1-bF65I3J6aqQ.mp4 |
15.11Мб |
03. 01 Transaction Data V1-bF65I3J6aqQ.zh-CN.vtt |
4.72Кб |
03. 03 Fine Tuning V1 RENDER V2-XOyb315xYbw.en.vtt |
3.22Кб |
03. 03 Fine Tuning V1 RENDER V2-XOyb315xYbw.mp4 |
5.78Мб |
03. 03 Fine Tuning V1 RENDER V2-XOyb315xYbw.pt-BR.vtt |
3.20Кб |
03. 03 Fine Tuning V1 RENDER V2-XOyb315xYbw.zh-CN.vtt |
2.79Кб |
03. 03 Training Memory V1-sx7T_KP5v9I.en.vtt |
7.85Кб |
03. 03 Training Memory V1-sx7T_KP5v9I.mp4 |
9.57Мб |
03. 03 Training Memory V1-sx7T_KP5v9I.pt-BR.vtt |
7.42Кб |
03. 03 Training Memory V1-sx7T_KP5v9I.zh-CN.vtt |
6.40Кб |
03. 09 Do You Have Advice For Someone Who Wants To Learn More-Wgq4eukacqE.en.vtt |
4.45Кб |
03. 09 Do You Have Advice For Someone Who Wants To Learn More-Wgq4eukacqE.mp4 |
44.80Мб |
03. 09 Do You Have Advice For Someone Who Wants To Learn More-Wgq4eukacqE.zh-CN.vtt |
3.44Кб |
03. 19 Uploading To S3 V1-Mz08Bac6h2Y.en.vtt |
3.13Кб |
03. 19 Uploading To S3 V1-Mz08Bac6h2Y.mp4 |
6.99Мб |
03. 19 Uploading To S3 V1-Mz08Bac6h2Y.zh-CN.vtt |
2.63Кб |
03. 4 Random Uniform V1-FacdIomrLIw.en.vtt |
6.30Кб |
03. 4 Random Uniform V1-FacdIomrLIw.mp4 |
8.10Мб |
03. 4 Random Uniform V1-FacdIomrLIw.pt-BR.vtt |
6.23Кб |
03. 4 Random Uniform V1-FacdIomrLIw.zh-CN.vtt |
5.34Кб |
03. AWS SageMaker.html |
15.59Кб |
03. Boston Housing Example - Tuning the Model.html |
8.72Кб |
03. Boston Housing In-Depth - Deploying the Model.html |
8.28Кб |
03. Branching.html |
19.17Кб |
03. Building a Sentiment Analysis Model (Linear Learner).html |
7.76Кб |
03. Changing How Git Log Displays Information.html |
13.93Кб |
03. Class, Object, Method and Attribute.html |
13.21Кб |
03. Clone An Existing Repo.html |
17.32Кб |
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.en.vtt |
1.26Кб |
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.mp4 |
4.68Мб |
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.pt-BR.vtt |
1.30Кб |
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.zh-CN.vtt |
1.07Кб |
03. Course Outline, Case Studies.html |
12.45Кб |
03. Deployment L3 C2 V1-1lzWAzypJ9k.en.vtt |
9.22Кб |
03. Deployment L3 C2 V1-1lzWAzypJ9k.mp4 |
16.24Мб |
03. Deployment L3 C2 V1-1lzWAzypJ9k.zh-CN.vtt |
7.60Кб |
03. Deployment L4 C2 V1-lsYRtKivrGc.en.vtt |
5.31Кб |
03. Deployment L4 C2 V1-lsYRtKivrGc.mp4 |
10.26Мб |
03. Deployment L4 C2 V1-lsYRtKivrGc.zh-CN.vtt |
4.32Кб |
03. Deployment L5 C2 V1-7TdiVF6qS1k.en.vtt |
5.23Кб |
03. Deployment L5 C2 V1-7TdiVF6qS1k.mp4 |
7.16Мб |
03. Deployment L5 C2 V1-7TdiVF6qS1k.zh-CN.vtt |
4.22Кб |
03. Elevator Pitch-S-nAHPrkQrQ.ar.vtt |
5.13Кб |
03. Elevator Pitch-S-nAHPrkQrQ.en.vtt |
3.53Кб |
03. Elevator Pitch-S-nAHPrkQrQ.es-MX.vtt |
3.56Кб |
03. Elevator Pitch-S-nAHPrkQrQ.ja-JP.vtt |
4.35Кб |
03. Elevator Pitch-S-nAHPrkQrQ.mp4 |
20.63Мб |
03. Elevator Pitch-S-nAHPrkQrQ.pt-BR.vtt |
3.47Кб |
03. Elevator Pitch-S-nAHPrkQrQ.zh-CN.vtt |
3.40Кб |
03. Exercise Payment Transaction Data.html |
7.70Кб |
03. Extracurricular Topics.html |
6.96Кб |
03. Fine-Tuning.html |
17.89Кб |
03. Get Access to GPU Instances.html |
17.24Кб |
03. Git and Version Control Terminology.html |
14.67Кб |
03. Git Commit.html |
22.29Кб |
03. Gitfinal L1 13 Git_S Terminology-bf26adzeqMM.ar.vtt |
3.63Кб |
03. Gitfinal L1 13 Git_S Terminology-bf26adzeqMM.en.vtt |
2.65Кб |
03. Gitfinal L1 13 Git_S Terminology-bf26adzeqMM.mp4 |
10.33Мб |
03. Gitfinal L1 13 Git_S Terminology-bf26adzeqMM.pt-BR.vtt |
2.79Кб |
03. Gitfinal L1 13 Git_S Terminology-bf26adzeqMM.zh-CN.vtt |
2.42Кб |
03. GitHub profile important items.html |
8.22Кб |
03. GitHub profile important items-prvPVTjVkwQ.ar.vtt |
3.93Кб |
03. GitHub profile important items-prvPVTjVkwQ.en.vtt |
2.93Кб |
03. GitHub profile important items-prvPVTjVkwQ.ja-JP.vtt |
3.28Кб |
03. GitHub profile important items-prvPVTjVkwQ.mp4 |
4.91Мб |
03. GitHub profile important items-prvPVTjVkwQ.pt-BR.vtt |
3.14Кб |
03. GitHub profile important items-prvPVTjVkwQ.zh-CN.vtt |
2.65Кб |
03. GPU Workspace Playground.html |
5.93Кб |
03. Interview Segment Further Learning.html |
5.93Кб |
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.en.vtt |
1.89Кб |
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.mp4 |
7.67Мб |
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.pt-BR.vtt |
1.94Кб |
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.zh-CN.vtt |
1.75Кб |
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.en.vtt |
2.44Кб |
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.mp4 |
12.31Мб |
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.pt-BR.vtt |
2.74Кб |
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.zh-CN.vtt |
2.09Кб |
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.en.vtt |
2.17Кб |
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.mp4 |
7.70Мб |
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.pt-BR.vtt |
2.68Кб |
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.zh-CN.vtt |
1.87Кб |
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.en.vtt |
3.21Кб |
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.mp4 |
6.49Мб |
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.pt-BR.vtt |
3.22Кб |
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.zh-CN.vtt |
2.77Кб |
03. Lesson Outline.html |
11.97Кб |
03. Machine Learning Workflow - Part 1 Introduction--ZtVV7RvGYY.en.vtt |
1.64Кб |
03. Machine Learning Workflow - Part 1 Introduction--ZtVV7RvGYY.mp4 |
4.44Мб |
03. Machine Learning Workflow - Part 1 Introduction--ZtVV7RvGYY.zh-CN.vtt |
1.38Кб |
03. Meet Andrew.html |
5.78Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.ar.vtt |
4.70Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.en.vtt |
3.55Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.mp4 |
2.60Мб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.pt-BR.vtt |
3.41Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.zh-CN.vtt |
3.31Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.ar.vtt |
1.57Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.en.vtt |
1.16Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.mp4 |
1.88Мб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.pt-BR.vtt |
1.17Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.zh-CN.vtt |
1.06Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.ar.vtt |
2.19Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.en.vtt |
1.52Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.mp4 |
5.03Мб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.pt-BR.vtt |
1.57Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.zh-CN.vtt |
1.35Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.ar.vtt |
1.46Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.en.vtt |
1.14Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.mp4 |
1.85Мб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.pt-BR.vtt |
1.22Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.zh-CN.vtt |
1.03Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.ar.vtt |
2.15Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.en.vtt |
1.60Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.mp4 |
4.23Мб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.pt-BR.vtt |
1.67Кб |
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.zh-CN.vtt |
1.49Кб |
03. Notebook Calculate Containment.html |
6.76Кб |
03. Notebook Sentiment RNN.html |
7.23Кб |
03. Possible Projects.html |
9.54Кб |
03. Pre-Notebook Linear Autoencoder.html |
8.20Кб |
03. Pre-Notebook Time-Series Forecasting.html |
9.21Кб |
03. Problem Introduction.html |
8.25Кб |
03. Random Uniform.html |
6.32Кб |
03. Refactoring Code.html |
8.84Кб |
03. Reverting A Commit.html |
9.13Кб |
03. SageMaker Instance Utilization Limits.html |
14.83Кб |
03. Testing and Data Science.html |
8.37Кб |
03. Text Processing.html |
6.65Кб |
03. Text Processing-pqheVyctkNQ.en.vtt |
2.63Кб |
03. Text Processing-pqheVyctkNQ.mp4 |
5.24Мб |
03. Text Processing-pqheVyctkNQ.pt-BR.vtt |
2.96Кб |
03. Text Processing-pqheVyctkNQ.zh-CN.vtt |
2.31Кб |
03. The Web.html |
8.51Кб |
03. The World Wide Web-Rxn-zCyg_iA.en.vtt |
1.40Кб |
03. The World Wide Web-Rxn-zCyg_iA.mp4 |
4.16Мб |
03. The World Wide Web-Rxn-zCyg_iA.pt-BR.vtt |
1.42Кб |
03. The World Wide Web-Rxn-zCyg_iA.zh-CN.vtt |
1.42Кб |
03. Training _ Memory.html |
8.61Кб |
03. Troubleshooting Possible Errors.html |
6.79Кб |
03. Upload Data to S3.html |
6.77Кб |
03. Why Use an Elevator Pitch.html |
7.37Кб |
03. Workspace.html |
5.87Кб |
04. 01 Writing Clean Code V1-wNaiahWCwkQ.en.vtt |
6.71Кб |
04. 01 Writing Clean Code V1-wNaiahWCwkQ.mp4 |
15.42Мб |
04. 01 Writing Clean Code V1-wNaiahWCwkQ.pt-BR.vtt |
7.48Кб |
04. 01 Writing Clean Code V1-wNaiahWCwkQ.zh-CN.vtt |
6.26Кб |
04. 02 Data Splitting Dist Solution V1-Cjn82LqTB00.en.vtt |
5.41Кб |
04. 02 Data Splitting Dist Solution V1-Cjn82LqTB00.mp4 |
12.40Мб |
04. 02 Data Splitting Dist Solution V1-Cjn82LqTB00.zh-CN.vtt |
4.55Кб |
04. 02 Processing Energy Data V2-zxnoYK4sYgk.en.vtt |
6.06Кб |
04. 02 Processing Energy Data V2-zxnoYK4sYgk.mp4 |
14.69Мб |
04. 06 Unit Tests V1-wb9jggHEvgI.en.vtt |
3.91Кб |
04. 06 Unit Tests V1-wb9jggHEvgI.mp4 |
4.49Мб |
04. 06 Unit Tests V1-wb9jggHEvgI.pt-BR.vtt |
4.04Кб |
04. 06 Unit Tests V1-wb9jggHEvgI.zh-CN.vtt |
3.52Кб |
04. 20 Custom PyTorch Model V1-kiZ22MJWSFU.en.vtt |
3.24Кб |
04. 20 Custom PyTorch Model V1-kiZ22MJWSFU.mp4 |
6.64Мб |
04. 20 Custom PyTorch Model V1-kiZ22MJWSFU.zh-CN.vtt |
2.84Кб |
04. 3 Data PreProcessing V1-Xw1MWmql7no.en.vtt |
6.93Кб |
04. 3 Data PreProcessing V1-Xw1MWmql7no.mp4 |
10.09Мб |
04. 3 Data PreProcessing V1-Xw1MWmql7no.zh-CN.vtt |
5.68Кб |
04. 5 General Rule V1-YKe9iOUMmsI.en.vtt |
5.68Кб |
04. 5 General Rule V1-YKe9iOUMmsI.mp4 |
8.00Мб |
04. 5 General Rule V1-YKe9iOUMmsI.pt-BR.vtt |
5.50Кб |
04. 5 General Rule V1-YKe9iOUMmsI.zh-CN.vtt |
4.72Кб |
04. Arvato Final Project-qBR6A0IQXEE.en.vtt |
5.37Кб |
04. Arvato Final Project-qBR6A0IQXEE.mp4 |
26.44Мб |
04. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt |
5.72Кб |
04. Arvato Final Project-qBR6A0IQXEE.zh-CN.vtt |
4.86Кб |
04. BertelsmannArvato Project Overview.html |
8.82Кб |
04. Branching Effectively.html |
27.93Кб |
04. Character-Wise RNN-dXl3eWCGLdU.en.vtt |
3.33Кб |
04. Character-Wise RNN-dXl3eWCGLdU.mp4 |
2.88Мб |
04. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt |
3.66Кб |
04. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt |
3.04Кб |
04. Character-wise RNNs.html |
6.59Кб |
04. Combining the Models.html |
7.53Кб |
04. Commit Messages.html |
12.05Кб |
04. Components of a Web App.html |
12.20Кб |
04. Congratulations.html |
6.61Кб |
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.en.vtt |
2.82Кб |
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.mp4 |
3.64Мб |
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.pt-BR.vtt |
2.64Кб |
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.zh-CN.vtt |
2.40Кб |
04. Create Your Elevator Pitch.html |
8.52Кб |
04. Data Pre-Processing.html |
6.72Кб |
04. Deploying and Using a Sentiment Analysis Model.html |
8.66Кб |
04. Deployment L3 C3 V1-r7XVQEojRKk.en.vtt |
2.30Кб |
04. Deployment L3 C3 V1-r7XVQEojRKk.mp4 |
3.55Мб |
04. Deployment L3 C3 V1-r7XVQEojRKk.zh-CN.vtt |
1.93Кб |
04. Deployment L4 C3 V1-7XORMSX7vAY.en.vtt |
1.44Кб |
04. Deployment L4 C3 V1-7XORMSX7vAY.mp4 |
3.26Мб |
04. Deployment L4 C3 V1-7XORMSX7vAY.zh-CN.vtt |
1.26Кб |
04. Deployment L5 C3 V1-OYYJerDHu0o.en.vtt |
7.58Кб |
04. Deployment L5 C3 V1-OYYJerDHu0o.mp4 |
13.64Мб |
04. Deployment L5 C3 V1-OYYJerDHu0o.zh-CN.vtt |
6.21Кб |
04. Determine A Repo_s Status.html |
16.79Кб |
04. Elevator Pitch-0QtgTG49E9I.ar.vtt |
2.28Кб |
04. Elevator Pitch-0QtgTG49E9I.en.vtt |
2.06Кб |
04. Elevator Pitch-0QtgTG49E9I.es-MX.vtt |
1.99Кб |
04. Elevator Pitch-0QtgTG49E9I.ja-JP.vtt |
2.45Кб |
04. Elevator Pitch-0QtgTG49E9I.mp4 |
9.98Мб |
04. Elevator Pitch-0QtgTG49E9I.pt-BR.vtt |
1.94Кб |
04. Elevator Pitch-0QtgTG49E9I.zh-CN.vtt |
1.99Кб |
04. Exercise Custom PyTorch Classifier.html |
6.84Кб |
04. Feature Extraction.html |
6.27Кб |
04. Feature Extraction-Bd6TJB8eVLQ.en.vtt |
1.10Кб |
04. Feature Extraction-Bd6TJB8eVLQ.mp4 |
4.15Мб |
04. Feature Extraction-Bd6TJB8eVLQ.zh-CN.vtt |
970б |
04. General Rule.html |
6.31Кб |
04. Good GitHub repository.html |
7.88Кб |
04. Good GitHub repository-qBi8Q1EJdfQ.ar.vtt |
2.56Кб |
04. Good GitHub repository-qBi8Q1EJdfQ.en.vtt |
1.92Кб |
04. Good GitHub repository-qBi8Q1EJdfQ.ja-JP.vtt |
2.21Кб |
04. Good GitHub repository-qBi8Q1EJdfQ.mp4 |
4.23Мб |
04. Good GitHub repository-qBi8Q1EJdfQ.pt-BR.vtt |
2.07Кб |
04. Good GitHub repository-qBi8Q1EJdfQ.zh-CN.vtt |
1.92Кб |
04. L1 031 Unsupervised Vs Supervised Learning V1 RENDER V2-9M6T9Bx3oNA.en.vtt |
3.74Кб |
04. L1 031 Unsupervised Vs Supervised Learning V1 RENDER V2-9M6T9Bx3oNA.mp4 |
8.01Мб |
04. L1 031 Unsupervised Vs Supervised Learning V1 RENDER V2-9M6T9Bx3oNA.zh-CN.vtt |
3.08Кб |
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.en.vtt |
4.19Кб |
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.mp4 |
19.12Мб |
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.pt-BR.vtt |
4.57Кб |
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.zh-CN.vtt |
3.93Кб |
04. L4 04 Longest Common Subsequence V1 V1-yxXXwBKeYvU.en.vtt |
2.63Кб |
04. L4 04 Longest Common Subsequence V1 V1-yxXXwBKeYvU.mp4 |
4.55Мб |
04. L4 04 Longest Common Subsequence V1 V1-yxXXwBKeYvU.zh-CN.vtt |
2.29Кб |
04. L4 Components Of A Web App V4-2aJf5sO2ox4.en.vtt |
2.45Кб |
04. L4 Components Of A Web App V4-2aJf5sO2ox4.mp4 |
7.83Мб |
04. L4 Components Of A Web App V4-2aJf5sO2ox4.pt-BR.vtt |
2.65Кб |
04. L4 Components Of A Web App V4-2aJf5sO2ox4.zh-CN.vtt |
2.19Кб |
04. L5 Outro-rW1YP1aSb08.en.vtt |
2.39Кб |
04. L5 Outro-rW1YP1aSb08.mp4 |
9.60Мб |
04. L5 Outro-rW1YP1aSb08.pt-BR.vtt |
2.48Кб |
04. Longest Common Subsequence.html |
6.29Кб |
04. Machine Learning Workflow.html |
9.57Кб |
04. Machine Learning Workflow - Part 2 Details-ku_96X6TZas.en.vtt |
4.92Кб |
04. Machine Learning Workflow - Part 2 Details-ku_96X6TZas.mp4 |
13.73Мб |
04. Machine Learning Workflow - Part 2 Details-ku_96X6TZas.zh-CN.vtt |
4.15Кб |
04. MacLinux Setup.html |
11.82Кб |
04. Meet Juno.html |
5.65Кб |
04. Mini-Project Tuning the Sentiment Analysis Model.html |
7.62Кб |
04. MNIST Dataset.html |
11.22Кб |
04. More Resources.html |
7.61Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.ar.vtt |
2.59Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.en.vtt |
1.97Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.mp4 |
3.63Мб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.pt-BR.vtt |
2.08Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.zh-CN.vtt |
1.87Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.ar.vtt |
1.27Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.en.vtt |
1023б |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.mp4 |
1.61Мб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.pt-BR.vtt |
1.07Кб |
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.zh-CN.vtt |
948б |
04. Notebook Linear Autoencoder.html |
7.57Кб |
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.en.vtt |
7.90Кб |
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.mp4 |
8.26Мб |
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.pt-BR.vtt |
7.47Кб |
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.zh-CN.vtt |
7.06Кб |
04. OOP Syntax.html |
10.88Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.ar.vtt |
2.19Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.en.vtt |
1.94Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.es-MX.vtt |
1.43Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.ja-JP.vtt |
2.36Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4 |
8.93Мб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.pt-BR.vtt |
1.40Кб |
04. Pitching to a Recruiter-LxAdWaA-qTQ.zh-CN.vtt |
1.74Кб |
04. Processing Energy Data.html |
6.84Кб |
04. Resetting Commits.html |
23.13Кб |
04. SageMaker Instance Utilization Limits.html |
16.52Кб |
04. Skills that Set You Apart.html |
7.27Кб |
04. Solution Data Distribution _ Splitting.html |
7.76Кб |
04. Unit Tests.html |
8.17Кб |
04. Unsupervised v Supervised Learning.html |
8.79Кб |
04. VGG Classifier-fOiQFXItYe4.en.vtt |
6.80Кб |
04. VGG Classifier-fOiQFXItYe4.mp4 |
10.89Мб |
04. VGG Classifier-fOiQFXItYe4.pt-BR.vtt |
6.72Кб |
04. VGG Classifier-fOiQFXItYe4.zh-CN.vtt |
5.87Кб |
04. VGG Model _ Classifier.html |
6.19Кб |
04. Viewing Modified Files.html |
14.02Кб |
04. Writing Clean Code.html |
10.75Кб |
05. 03 Creating Time Series V2-KMzVAmoa66k.en.vtt |
5.29Кб |
05. 03 Creating Time Series V2-KMzVAmoa66k.mp4 |
10.52Мб |
05. 03 LinearLearner V1-pjs5pP9OOMc.en.vtt |
3.35Кб |
05. 03 LinearLearner V1-pjs5pP9OOMc.mp4 |
5.73Мб |
05. 03 LinearLearner V1-pjs5pP9OOMc.zh-CN.vtt |
2.91Кб |
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.en.vtt |
1.86Кб |
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.mp4 |
2.77Мб |
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.pt-BR.vtt |
2.11Кб |
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.zh-CN.vtt |
1.69Кб |
05. 22 Simple NN V1-FINTJpz1Yx0.en.vtt |
2.78Кб |
05. 22 Simple NN V1-FINTJpz1Yx0.mp4 |
4.98Мб |
05. 22 Simple NN V1-FINTJpz1Yx0.zh-CN.vtt |
2.34Кб |
05. 3 Defining Training Autoenc V1-OWrlQUSGqyo.en.vtt |
4.38Кб |
05. 3 Defining Training Autoenc V1-OWrlQUSGqyo.mp4 |
5.95Мб |
05. 3 Defining Training Autoenc V1-OWrlQUSGqyo.pt-BR.vtt |
4.12Кб |
05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.en.vtt |
4.78Кб |
05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.mp4 |
6.45Мб |
05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.zh-CN.vtt |
4.12Кб |
05. 6 Normal Distribution V1-xm43q4qD2tI.en.vtt |
3.54Кб |
05. 6 Normal Distribution V1-xm43q4qD2tI.mp4 |
4.07Мб |
05. 6 Normal Distribution V1-xm43q4qD2tI.pt-BR.vtt |
3.50Кб |
05. 6 Normal Distribution V1-xm43q4qD2tI.zh-CN.vtt |
2.90Кб |
05. APIs [advanced version].html |
10.39Кб |
05. Arvato Terms and Conditions.html |
8.84Кб |
05. Bag of Words.html |
6.34Кб |
05. Bag Of Words-A7M1z8yLl0w.en.vtt |
4.72Кб |
05. Bag Of Words-A7M1z8yLl0w.en.vtt |
4.72Кб |
05. Bag Of Words-A7M1z8yLl0w.mp4 |
6.57Мб |
05. Bag Of Words-A7M1z8yLl0w.mp4 |
6.57Мб |
05. Bag Of Words-A7M1z8yLl0w.pt-BR.vtt |
5.04Кб |
05. Bag Of Words-A7M1z8yLl0w.pt-BR.vtt |
5.04Кб |
05. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt |
4.12Кб |
05. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt |
4.12Кб |
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.en.vtt |
3.84Кб |
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.mp4 |
9.15Мб |
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.pt-BR.vtt |
4.07Кб |
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.zh-CN.vtt |
3.27Кб |
05. Create A Repo - Outro-h7j4STDFCjs.ar.vtt |
959б |
05. Create A Repo - Outro-h7j4STDFCjs.en.vtt |
720б |
05. Create A Repo - Outro-h7j4STDFCjs.mp4 |
2.73Мб |
05. Create A Repo - Outro-h7j4STDFCjs.pt-BR.vtt |
800б |
05. Create A Repo - Outro-h7j4STDFCjs.zh-CN.vtt |
664б |
05. Defining _ Training an Autoencoder.html |
7.10Кб |
05. Deployment L2 C2 V2-TRUCNy5Eqjc.en.vtt |
3.60Кб |
05. Deployment L2 C2 V2-TRUCNy5Eqjc.mp4 |
7.89Мб |
05. Deployment L2 C2 V2-TRUCNy5Eqjc.zh-CN.vtt |
3.01Кб |
05. Deployment L4 C4 V1-Q2Vthdca49I.en.vtt |
3.67Кб |
05. Deployment L4 C4 V1-Q2Vthdca49I.mp4 |
6.13Мб |
05. Deployment L4 C4 V1-Q2Vthdca49I.zh-CN.vtt |
2.97Кб |
05. Deployment L5 C4 V1-v7dYwxuKXzI.en.vtt |
1.07Кб |
05. Deployment L5 C4 V1-v7dYwxuKXzI.mp4 |
1.26Мб |
05. Deployment L5 C4 V1-v7dYwxuKXzI.zh-CN.vtt |
915б |
05. Dynamic Programming.html |
6.26Кб |
05. Encoding Words, Solution.html |
6.74Кб |
05. Exercise Creating Time Series.html |
6.85Кб |
05. Exercise OOP Syntax Practice - Part 1.html |
9.09Кб |
05. Git Diff.html |
8.70Кб |
05. How Computers Interpret Images.html |
12.68Кб |
05. Interview with Art - Part 1.html |
7.95Кб |
05. Interview with Art - Part 1-ClLYamtaO-Q.ar.vtt |
4.59Кб |
05. Interview with Art - Part 1-ClLYamtaO-Q.en.vtt |
3.82Кб |
05. Interview with Art - Part 1-ClLYamtaO-Q.ja-JP.vtt |
4.29Кб |
05. Interview with Art - Part 1-ClLYamtaO-Q.mp4 |
21.79Мб |
05. Interview with Art - Part 1-ClLYamtaO-Q.pt-BR.vtt |
4.00Кб |
05. Interview with Art - Part 1-ClLYamtaO-Q.zh-CN.vtt |
3.40Кб |
05. Knowledge.html |
12.51Кб |
05. L1 032 Model Design V1 RENDER V2-zxNoSTZ3s90.en.vtt |
2.79Кб |
05. L1 032 Model Design V1 RENDER V2-zxNoSTZ3s90.mp4 |
10.22Мб |
05. L1 032 Model Design V1 RENDER V2-zxNoSTZ3s90.zh-CN.vtt |
2.40Кб |
05. L4 05 Dynamic Programming V1 V1-vAwu-sW9GJE.en.vtt |
6.36Кб |
05. L4 05 Dynamic Programming V1 V1-vAwu-sW9GJE.mp4 |
7.14Мб |
05. L4 05 Dynamic Programming V1 V1-vAwu-sW9GJE.zh-CN.vtt |
5.55Кб |
05. Launch an Instance.html |
13.40Кб |
05. Lesson Outro.html |
5.37Кб |
05. LinearLearner _ Class Imbalance.html |
7.68Кб |
05. Machine Learning Workflow.html |
9.19Кб |
05. Merging.html |
17.11Кб |
05. Mini-Project Solution - Tuning the Model.html |
6.71Кб |
05. Mini-Project Updating a Sentiment Analysis Model.html |
7.48Кб |
05. Model Design.html |
8.65Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.ar.vtt |
3.28Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.en.vtt |
2.57Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.mp4 |
3.77Мб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.pt-BR.vtt |
2.76Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.zh-CN.vtt |
2.46Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.ar.vtt |
6.92Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.en.vtt |
5.22Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.mp4 |
6.19Мб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.pt-BR.vtt |
5.56Кб |
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.zh-CN.vtt |
4.72Кб |
05. Normal Distribution.html |
6.40Кб |
05. Outro.html |
5.76Кб |
05. Pre-Notebook Transfer Learning.html |
8.15Кб |
05. Quiz Clean Code.html |
11.89Кб |
05. Sequence Batching.html |
6.59Кб |
05. Sequence-Batching-Z4OiyU0Cldg.en.vtt |
2.09Кб |
05. Sequence-Batching-Z4OiyU0Cldg.mp4 |
2.29Мб |
05. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt |
2.33Кб |
05. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt |
1.92Кб |
05. Setting up a Notebook Instance.html |
11.90Кб |
05. Solution Simple Neural Network.html |
6.78Кб |
05. Text Processing, Bag of Words.html |
9.65Кб |
05. The Front-End.html |
8.47Кб |
05. The Front End-CspuxLGFM4U.en.vtt |
1.88Кб |
05. The Front End-CspuxLGFM4U.mp4 |
8.64Мб |
05. The Front End-CspuxLGFM4U.pt-BR.vtt |
1.96Кб |
05. The Front End-CspuxLGFM4U.zh-CN.vtt |
1.69Кб |
05. Unit Testing Tools.html |
8.08Кб |
05. Use Your Elevator Pitch on LinkedIn.html |
9.77Кб |
05. Viewing File Changes.html |
17.36Кб |
05. Windows Setup.html |
10.90Кб |
06. 02 Writing Modular Code V2-qN6EOyNlSnk.en.vtt |
7.63Кб |
06. 02 Writing Modular Code V2-qN6EOyNlSnk.mp4 |
7.71Мб |
06. 02 Writing Modular Code V2-qN6EOyNlSnk.pt-BR.vtt |
8.52Кб |
06. 02 Writing Modular Code V2-qN6EOyNlSnk.zh-CN.vtt |
6.75Кб |
06. 23 Train Script V2-1cbvRmKvQIg.en.vtt |
8.56Кб |
06. 23 Train Script V2-1cbvRmKvQIg.mp4 |
19.45Мб |
06. 23 Train Script V2-1cbvRmKvQIg.zh-CN.vtt |
7.42Кб |
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.en.vtt |
7.71Кб |
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.mp4 |
20.47Мб |
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.pt-BR.vtt |
7.92Кб |
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.zh-CN.vtt |
6.93Кб |
06. 4 A Simple Solution V2-Jh3mbomqpw8.en.vtt |
2.52Кб |
06. 4 A Simple Solution V2-Jh3mbomqpw8.mp4 |
3.47Мб |
06. 4 A Simple Solution V2-Jh3mbomqpw8.pt-BR.vtt |
2.13Кб |
06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.en.vtt |
3.60Кб |
06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.mp4 |
4.59Мб |
06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.zh-CN.vtt |
3.03Кб |
06. 6 Screencast HTML Code V2-G7fBus1JSc0.en.vtt |
7.78Кб |
06. 6 Screencast HTML Code V2-G7fBus1JSc0.mp4 |
10.28Мб |
06. 6 Screencast HTML Code V2-G7fBus1JSc0.pt-BR.vtt |
8.14Кб |
06. 6 Screencast HTML Code V2-G7fBus1JSc0.zh-CN.vtt |
7.22Кб |
06. A Couple of Notes about OOP.html |
15.48Кб |
06. A Simple Solution.html |
7.02Кб |
06. BertelsmannArvato Project Workspace.html |
7.05Кб |
06. Building and Deploying the Model.html |
7.91Кб |
06. Cloning the Deployment Notebooks.html |
9.58Кб |
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.en.vtt |
3.11Кб |
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.mp4 |
5.51Мб |
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.pt-BR.vtt |
3.16Кб |
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.zh-CN.vtt |
2.59Кб |
06. Course Outro.html |
5.85Кб |
06. Create Your Profile With SEO In Mind.html |
9.47Кб |
06. Deployment L2 C3 V2-jqL74whe9yo.en.vtt |
1.81Кб |
06. Deployment L2 C3 V2-jqL74whe9yo.mp4 |
3.89Мб |
06. Deployment L2 C3 V2-jqL74whe9yo.zh-CN.vtt |
1.49Кб |
06. Deployment L3 C4b V1-JCiQhhXbeuc.en.vtt |
8.45Кб |
06. Deployment L3 C4b V1-JCiQhhXbeuc.mp4 |
17.17Мб |
06. Deployment L3 C4b V1-JCiQhhXbeuc.zh-CN.vtt |
6.79Кб |
06. Deployment L4 C5 V2-i-EjGkZ8z30.en.vtt |
4.58Кб |
06. Deployment L4 C5 V2-i-EjGkZ8z30.mp4 |
11.24Мб |
06. Deployment L4 C5 V2-i-EjGkZ8z30.zh-CN.vtt |
3.62Кб |
06. Deployment L5 C5 V1-75RxW3R6674.en.vtt |
5.25Кб |
06. Deployment L5 C5 V1-75RxW3R6674.mp4 |
8.06Мб |
06. Deployment L5 C5 V1-75RxW3R6674.zh-CN.vtt |
4.42Кб |
06. Exercise Define a LinearLearner.html |
8.89Кб |
06. Exercise Training Script.html |
6.78Кб |
06. Getting Rid of Zero-Length.html |
6.76Кб |
06. Having Git Ignore Files.html |
14.02Кб |
06. HTML.html |
13.88Кб |
06. Identify fixes for example “bad” profile.html |
11.01Кб |
06. Identify fixes for example “bad” profile-AF07y1oAim0.ar.vtt |
490б |
06. Identify fixes for example “bad” profile-AF07y1oAim0.en.vtt |
371б |
06. Identify fixes for example “bad” profile-AF07y1oAim0.ja-JP.vtt |
473б |
06. Identify fixes for example “bad” profile-AF07y1oAim0.mp4 |
1.14Мб |
06. Identify fixes for example “bad” profile-AF07y1oAim0.pt-BR.vtt |
457б |
06. Identify fixes for example “bad” profile-AF07y1oAim0.zh-CN.vtt |
357б |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.ar.vtt |
1.94Кб |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.en.vtt |
1.39Кб |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.ja-JP.vtt |
1.61Кб |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4 |
1.59Мб |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.pt-BR.vtt |
1.48Кб |
06. Identify fixes for example “bad” profile-ncFtwW5urHk.zh-CN.vtt |
1.31Кб |
06. L1C05 HSV2 Population Segmentation With KMeans V1-3pXFLrnk7q0.en.vtt |
2.65Кб |
06. L1C05 HSV2 Population Segmentation With KMeans V1-3pXFLrnk7q0.mp4 |
8.04Мб |
06. L1C05 HSV2 Population Segmentation With KMeans V1-3pXFLrnk7q0.zh-CN.vtt |
2.23Кб |
06. Loading and Testing the New Data.html |
6.58Кб |
06. Login to the Instance.html |
10.13Кб |
06. Merge Conflicts.html |
20.82Кб |
06. Mini-Project Solution - Fixing the Error and Testing.html |
6.74Кб |
06. MLP Structure _ Class Scores.html |
11.34Кб |
06. Notebook Transfer Learning, Flowers.html |
6.64Кб |
06. Notes On OOP-NcgDIWm6iBA.en.vtt |
6.10Кб |
06. Notes On OOP-NcgDIWm6iBA.mp4 |
6.26Мб |
06. Notes On OOP-NcgDIWm6iBA.pt-BR.vtt |
6.08Кб |
06. Notes On OOP-NcgDIWm6iBA.zh-CN.vtt |
5.35Кб |
06. Onward.html |
5.81Кб |
06. Onward-iXbMaTwfIJI.ar.vtt |
1.43Кб |
06. Onward-iXbMaTwfIJI.en.vtt |
1.06Кб |
06. Onward-iXbMaTwfIJI.mp4 |
3.51Мб |
06. Onward-iXbMaTwfIJI.pt-BR.vtt |
1.12Кб |
06. Onward-iXbMaTwfIJI.zh-CN.vtt |
973б |
06. Population Segmentation.html |
8.74Кб |
06. Pre-Notebook Character-Level RNN.html |
8.77Кб |
06. Pre-Notebook Weight Initialization, Normal Distribution.html |
7.49Кб |
06. Project Files _ Evaluation.html |
8.88Кб |
06. Quiz Unit Tests.html |
7.14Кб |
06. Solution Split Data.html |
8.98Кб |
06. Student Hub.html |
8.89Кб |
06. TF-IDF.html |
6.20Кб |
06. TF-IDF-XZBiBIRcACE.en.vtt |
2.38Кб |
06. TF-IDF-XZBiBIRcACE.mp4 |
2.05Мб |
06. TF-IDF-XZBiBIRcACE.zh-CN.vtt |
2.07Кб |
06. Viewing A Specific Commit.html |
11.80Кб |
06. What is Cloud Computing _ Why Would We Use It.html |
17.21Кб |
06. World Bank API [advanced version].html |
8.52Кб |
06. Writing Modular Code.html |
10.53Кб |
07. 04 Do Your Research V1-CR4JeAn1fgk.en.vtt |
2.69Кб |
07. 04 Do Your Research V1-CR4JeAn1fgk.mp4 |
6.43Мб |
07. 04 Do Your Research V1-CR4JeAn1fgk.pt-BR.vtt |
2.80Кб |
07. 04 Do Your Research V1-CR4JeAn1fgk.zh-CN.vtt |
2.22Кб |
07. 05 Convert To JSON V2-YyxfrVQcM1E.en.vtt |
2.87Кб |
07. 05 Convert To JSON V2-YyxfrVQcM1E.mp4 |
6.66Мб |
07. 05 Default LinearLearner V2-WaqDbA_5dNE.en.vtt |
3.10Кб |
07. 05 Default LinearLearner V2-WaqDbA_5dNE.mp4 |
4.87Мб |
07. 05 Default LinearLearner V2-WaqDbA_5dNE.zh-CN.vtt |
2.59Кб |
07. 24 Complete Training Script V1-xmrB3sqbeTU.en.vtt |
4.16Кб |
07. 24 Complete Training Script V1-xmrB3sqbeTU.mp4 |
8.61Мб |
07. 24 Complete Training Script V1-xmrB3sqbeTU.zh-CN.vtt |
3.49Кб |
07. 6 Cleaning And Padding V1-UgPo1_cq-0g.mp4 |
6.36Мб |
07. 6 Cleaning And Padding V1-UgPo1_cq-0g.zh-CN.vtt |
3.84Кб |
07. Access the Career Portal.html |
8.28Кб |
07. A Repository_s History - Outro-9rUf2HbdAd8.ar.vtt |
1.47Кб |
07. A Repository_s History - Outro-9rUf2HbdAd8.en.vtt |
1.01Кб |
07. A Repository_s History - Outro-9rUf2HbdAd8.mp4 |
4.39Мб |
07. A Repository_s History - Outro-9rUf2HbdAd8.pt-BR.vtt |
1.06Кб |
07. A Repository_s History - Outro-9rUf2HbdAd8.zh-CN.vtt |
933б |
07. Autoencoders 05 Learnable Sampling V2 RENDER V4-KjztLwPksj8.en.vtt |
4.16Кб |
07. Autoencoders 05 Learnable Sampling V2 RENDER V4-KjztLwPksj8.mp4 |
6.26Мб |
07. Autoencoders 05 Learnable Sampling V2 RENDER V4-KjztLwPksj8.pt-BR.vtt |
4.08Кб |
07. Boston Housing In-Depth - Creating a Tuning Job.html |
8.29Кб |
07. Capstone-bq-H7M5BU3U.en.vtt |
1.59Кб |
07. Capstone-bq-H7M5BU3U.mp4 |
7.20Мб |
07. Capstone-bq-H7M5BU3U.zh-CN.vtt |
1.37Кб |
07. Cleaning _ Padding Data.html |
6.63Кб |
07. Deployment L3 C5b V1-WTwj-7XcTro.en.vtt |
10.36Кб |
07. Deployment L3 C5b V1-WTwj-7XcTro.mp4 |
17.32Мб |
07. Deployment L3 C5b V1-WTwj-7XcTro.zh-CN.vtt |
8.53Кб |
07. Deployment L4 C6 V2-vlsZ-jC5C8Y.en.vtt |
7.46Кб |
07. Deployment L4 C6 V2-vlsZ-jC5C8Y.mp4 |
12.48Мб |
07. Deployment L4 C6 V2-vlsZ-jC5C8Y.zh-CN.vtt |
5.96Кб |
07. Deployment L5 C6 V1-sEBK1dmiUfE.en.vtt |
6.27Кб |
07. Deployment L5 C6 V1-sEBK1dmiUfE.mp4 |
9.69Мб |
07. Deployment L5 C6 V1-sEBK1dmiUfE.zh-CN.vtt |
5.09Кб |
07. Do Your Research.html |
10.58Кб |
07. Exercise Convert to JSON.html |
6.85Кб |
07. Exercise HTML.html |
8.78Кб |
07. Exercise OOP Syntax Practice - Part 2.html |
9.10Кб |
07. Exploring the New Data.html |
6.55Кб |
07. Freezing Weights _ Last Layer.html |
6.76Кб |
07. Freezing Weights-ssNIX_2QfMQ.en.vtt |
3.34Кб |
07. Freezing Weights-ssNIX_2QfMQ.mp4 |
4.55Мб |
07. Freezing Weights-ssNIX_2QfMQ.pt-BR.vtt |
3.23Кб |
07. Freezing Weights-ssNIX_2QfMQ.zh-CN.vtt |
2.92Кб |
07. How to Use a Deployed Model.html |
9.03Кб |
07. Is Everything Set Up.html |
9.03Кб |
07. K-means, Overview.html |
11.06Кб |
07. K-means Clustering-Cf_LSDCEBzk.en.vtt |
6.44Кб |
07. K-means Clustering-Cf_LSDCEBzk.mp4 |
6.06Мб |
07. K-means Clustering-Cf_LSDCEBzk.zh-CN.vtt |
5.84Кб |
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.en.vtt |
3.26Кб |
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.mp4 |
5.90Мб |
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.pt-BR.vtt |
3.68Кб |
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.zh-CN.vtt |
2.95Кб |
07. Learnable Upsampling.html |
7.13Кб |
07. Notebook Character-Level RNN.html |
7.02Кб |
07. Notebook Exploring the Data.html |
6.62Кб |
07. Notebook Normal _ No Initialization.html |
6.81Кб |
07. One-Hot Encoding.html |
6.38Кб |
07. One-Hot Encoding-a0j1CDXFYZI.en.vtt |
1.40Кб |
07. One-Hot Encoding-a0j1CDXFYZI.mp4 |
1.08Мб |
07. One-Hot Encoding-a0j1CDXFYZI.pt-BR.vtt |
1.59Кб |
07. One-Hot Encoding-a0j1CDXFYZI.zh-CN.vtt |
1.23Кб |
07. Outro.html |
6.11Кб |
07. Outro.html |
5.77Кб |
07. Outro.html |
5.27Кб |
07. Outro-5eyvsMvAPYs.ar.vtt |
1.55Кб |
07. Outro-5eyvsMvAPYs.en.vtt |
1.33Кб |
07. Outro-5eyvsMvAPYs.mp4 |
5.14Мб |
07. Outro-5eyvsMvAPYs.pt-BR.vtt |
1.39Кб |
07. Outro-5eyvsMvAPYs.zh-CN.vtt |
1.25Кб |
07. Profile Essentials.html |
11.27Кб |
07. Python and APIs [advanced version].html |
6.74Кб |
07. Quick Fixes #1.html |
7.77Кб |
07. Quick Fixes-Lb9e2KemR6I.ar.vtt |
2.61Кб |
07. Quick Fixes-Lb9e2KemR6I.en.vtt |
1.89Кб |
07. Quick Fixes-Lb9e2KemR6I.ja-JP.vtt |
2.17Кб |
07. Quick Fixes-Lb9e2KemR6I.mp4 |
3.99Мб |
07. Quick Fixes-Lb9e2KemR6I.pt-BR.vtt |
2.06Кб |
07. Quick Fixes-Lb9e2KemR6I.zh-CN.vtt |
1.87Кб |
07. Quiz Refactoring - Wine Quality.html |
8.37Кб |
07. Solution Complete Training Script.html |
6.84Кб |
07. Solution Default LinearLearner.html |
7.72Кб |
07. Starbucks Project Overview.html |
9.29Кб |
07. Test Driven Development and Data Science.html |
8.88Кб |
07. Why Cloud Computing .html |
16.06Кб |
08. 04 Implementing CharRNN V2-MMtgZXzFB10.en.vtt |
11.56Кб |
08. 04 Implementing CharRNN V2-MMtgZXzFB10.mp4 |
15.77Мб |
08. 04 Implementing CharRNN V2-MMtgZXzFB10.pt-BR.vtt |
10.73Кб |
08. 04 Implementing CharRNN V2-MMtgZXzFB10.zh-CN.vtt |
9.43Кб |
08. 07 DeepAR Estimator V2-1Wx-LK9TVWY.en.vtt |
2.20Кб |
08. 07 DeepAR Estimator V2-1Wx-LK9TVWY.mp4 |
3.45Мб |
08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.en.vtt |
5.04Кб |
08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.mp4 |
5.48Мб |
08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.zh-CN.vtt |
4.19Кб |
08. 7 Sol Default Init V1-xIn8XLbR1LM.en.vtt |
5.65Кб |
08. 7 Sol Default Init V1-xIn8XLbR1LM.mp4 |
8.15Мб |
08. 7 Sol Default Init V1-xIn8XLbR1LM.pt-BR.vtt |
5.55Кб |
08. 7 Sol Default Init V1-xIn8XLbR1LM.zh-CN.vtt |
4.79Кб |
08. Advanced API Code Walk-through-AkqO534YooE.en.vtt |
11.39Кб |
08. Advanced API Code Walk-through-AkqO534YooE.mp4 |
17.73Мб |
08. Advanced API Code Walk-through-AkqO534YooE.pt-BR.vtt |
11.66Кб |
08. Advanced API Code Walk-through-AkqO534YooE.zh-CN.vtt |
10.34Кб |
08. Autoencoders 06 Transpose Convolution RENDER V4-hnnLAC1Q0zg.en.vtt |
3.72Кб |
08. Autoencoders 06 Transpose Convolution RENDER V4-hnnLAC1Q0zg.mp4 |
3.32Мб |
08. Autoencoders 06 Transpose Convolution RENDER V4-hnnLAC1Q0zg.pt-BR.vtt |
3.23Кб |
08. Boston Housing Example - Getting the Data Ready.html |
12.59Кб |
08. Boston Housing In-Depth - Monitoring the Tuning Job.html |
6.74Кб |
08. Building a New Model.html |
6.54Кб |
08. Commenting Object-Oriented Code.html |
10.99Кб |
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.en.vtt |
7.51Кб |
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.mp4 |
6.55Мб |
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.pt-BR.vtt |
7.48Кб |
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.zh-CN.vtt |
6.12Кб |
08. Creating and Using an Endpoint.html |
8.75Кб |
08. Creating a Notebook Instance.html |
9.92Кб |
08. Custom SKLearn Model.html |
7.45Кб |
08. Deployment L2 C4 V1-78y5cTR-JxM.en.vtt |
6.21Кб |
08. Deployment L2 C4 V1-78y5cTR-JxM.mp4 |
10.63Мб |
08. Deployment L2 C4 V1-78y5cTR-JxM.zh-CN.vtt |
5.29Кб |
08. Deployment L4 C7 V1-WXjIkSHYEyM.en.vtt |
1.89Кб |
08. Deployment L4 C7 V1-WXjIkSHYEyM.mp4 |
2.44Мб |
08. Deployment L4 C7 V1-WXjIkSHYEyM.zh-CN.vtt |
1.61Кб |
08. Deployment L5 C7 V1-RUVxrKcWAsU.en.vtt |
9.22Кб |
08. Deployment L5 C7 V1-RUVxrKcWAsU.mp4 |
14.62Мб |
08. Deployment L5 C7 V1-RUVxrKcWAsU.zh-CN.vtt |
7.49Кб |
08. Div and Span.html |
9.30Кб |
08. Div and Span-cbKA_dvthcY.en.vtt |
2.35Кб |
08. Div and Span-cbKA_dvthcY.mp4 |
2.91Мб |
08. Div and Span-cbKA_dvthcY.pt-BR.vtt |
2.40Кб |
08. Div and Span-cbKA_dvthcY.zh-CN.vtt |
2.10Кб |
08. Exercise Format Data _ Train the LinearLearner.html |
8.42Кб |
08. Implementing a Char-RNN.html |
7.00Кб |
08. L1C3 Creating A Notebook Instance V2-w2GBAnhUlOw.en.vtt |
7.26Кб |
08. L1C3 Creating A Notebook Instance V2-w2GBAnhUlOw.mp4 |
8.84Мб |
08. L1C3 Creating A Notebook Instance V2-w2GBAnhUlOw.zh-CN.vtt |
6.42Кб |
08. L2 2 11 Logging V2-9qKQdRoIMbU.en.vtt |
1.05Кб |
08. L2 2 11 Logging V2-9qKQdRoIMbU.mp4 |
3.02Мб |
08. L2 2 11 Logging V2-9qKQdRoIMbU.pt-BR.vtt |
1.25Кб |
08. L2 2 11 Logging V2-9qKQdRoIMbU.zh-CN.vtt |
937б |
08. Last Layer-4LniBMFI53g.en.vtt |
6.46Кб |
08. Last Layer-4LniBMFI53g.mp4 |
10.03Мб |
08. Last Layer-4LniBMFI53g.pt-BR.vtt |
6.13Кб |
08. Last Layer-4LniBMFI53g.zh-CN.vtt |
5.25Кб |
08. Logging.html |
7.16Кб |
08. Loss _ Optimization.html |
10.68Кб |
08. Machine Learning Applications.html |
9.76Кб |
08. Machine Learning in the Workplace-Q4rgQo6ofoc.en.vtt |
3.47Кб |
08. Machine Learning in the Workplace-Q4rgQo6ofoc.mp4 |
14.28Мб |
08. Machine Learning in the Workplace-Q4rgQo6ofoc.zh-CN.vtt |
2.93Кб |
08. Padded Features, Solution.html |
6.75Кб |
08. Quick Fixes #2.html |
8.75Кб |
08. Quick Fixes #2-It6AEuSDQw0.ar.vtt |
608б |
08. Quick Fixes #2-It6AEuSDQw0.en.vtt |
435б |
08. Quick Fixes #2-It6AEuSDQw0.ja-JP.vtt |
487б |
08. Quick Fixes #2-It6AEuSDQw0.mp4 |
2.25Мб |
08. Quick Fixes #2-It6AEuSDQw0.pt-BR.vtt |
453б |
08. Quick Fixes #2-It6AEuSDQw0.zh-CN.vtt |
410б |
08. Solution and Default Initialization.html |
6.40Кб |
08. Solution Formatting JSON Lines _ DeepAR Estimator.html |
6.91Кб |
08. Solution Refactoring - Wine Quality.html |
8.36Кб |
08. Starbucks Project Workspace.html |
7.03Кб |
08. Training a Classifier.html |
6.03Кб |
08. Transpose Convolutions.html |
7.13Кб |
08. Word Embeddings.html |
6.37Кб |
08. Word Embeddings-4mM_S9L2_JQ.en.vtt |
1.55Кб |
08. Word Embeddings-4mM_S9L2_JQ.mp4 |
1.22Мб |
08. Word Embeddings-4mM_S9L2_JQ.pt-BR.vtt |
1.71Кб |
08. Word Embeddings-4mM_S9L2_JQ.zh-CN.vtt |
1.28Кб |
08. Work Experiences _ Accomplishments.html |
9.80Кб |
08. World Bank Data Dashboard [advanced version].html |
8.40Кб |
09. 05 Batching Data V1-9Eg0wf3eW-k.en.vtt |
5.17Кб |
09. 05 Batching Data V1-9Eg0wf3eW-k.mp4 |
5.82Мб |
09. 05 Batching Data V1-9Eg0wf3eW-k.pt-BR.vtt |
4.92Кб |
09. 05 Batching Data V1-9Eg0wf3eW-k.zh-CN.vtt |
4.24Кб |
09. 06 Defining A Network V1-9gvaQvyfLfY.en.vtt |
7.13Кб |
09. 06 Defining A Network V1-9gvaQvyfLfY.mp4 |
9.78Мб |
09. 06 Defining A Network V1-9gvaQvyfLfY.pt-BR.vtt |
6.84Кб |
09. 06 Defining A Network V1-9gvaQvyfLfY.zh-CN.vtt |
6.01Кб |
09. 091 Training Job V1--whnaHFkPxU.en.vtt |
5.44Кб |
09. 091 Training Job V1--whnaHFkPxU.mp4 |
15.89Мб |
09. 091 Training Job V1--whnaHFkPxU.zh-CN.vtt |
4.63Кб |
09. 26 PyTorch Estimator Model V1-pJOkQfMtxpc.en.vtt |
7.18Кб |
09. 26 PyTorch Estimator Model V1-pJOkQfMtxpc.mp4 |
16.68Мб |
09. 26 PyTorch Estimator Model V1-pJOkQfMtxpc.zh-CN.vtt |
6.20Кб |
09. 7 Convolutional Autoenc V1-QCA8QeZeDW8.en.vtt |
6.70Кб |
09. 7 Convolutional Autoenc V1-QCA8QeZeDW8.mp4 |
8.24Мб |
09. 7 Convolutional Autoenc V1-QCA8QeZeDW8.pt-BR.vtt |
6.05Кб |
09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.en.vtt |
6.61Кб |
09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.mp4 |
9.01Мб |
09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.zh-CN.vtt |
5.66Кб |
09. Additional Material.html |
6.54Кб |
09. A Gaussian Class.html |
15.96Кб |
09. Batching Data, Solution.html |
6.60Кб |
09. Boston Housing Example - Training the Model.html |
9.91Кб |
09. Boston Housing In-Depth - Building and Testing the Model.html |
6.71Кб |
09. Build and Strengthen Your Network.html |
10.65Кб |
09. Building a Lambda Function.html |
15.65Кб |
09. CNN Project Dog Breed Classifier.html |
9.12Кб |
09. Convolutional Autoencoder.html |
7.07Кб |
09. Create a SageMaker Notebook Instance.html |
10.73Кб |
09. Defining a Network in PyTorch.html |
11.75Кб |
09. Deployment L2 C5 V1-rqYlkCTLmIY.en.vtt |
5.82Кб |
09. Deployment L2 C5 V1-rqYlkCTLmIY.mp4 |
8.36Мб |
09. Deployment L2 C5 V1-rqYlkCTLmIY.zh-CN.vtt |
5.04Кб |
09. Deployment L3 C6 V1-jOXETK4AerU.en.vtt |
9.36Кб |
09. Deployment L3 C6 V1-jOXETK4AerU.mp4 |
18.80Мб |
09. Deployment L3 C6 V1-jOXETK4AerU.zh-CN.vtt |
7.90Кб |
09. Deployment L4 C8 V1-ap7d7DZL0Ic.en.vtt |
3.00Кб |
09. Deployment L4 C8 V1-ap7d7DZL0Ic.mp4 |
6.44Мб |
09. Deployment L4 C8 V1-ap7d7DZL0Ic.zh-CN.vtt |
2.50Кб |
09. Deployment L5 C8 V1-Vdacqn_w-e4.en.vtt |
4.08Кб |
09. Deployment L5 C8 V1-Vdacqn_w-e4.mp4 |
3.81Мб |
09. Deployment L5 C8 V1-Vdacqn_w-e4.zh-CN.vtt |
3.49Кб |
09. Efficient Code.html |
8.58Кб |
09. Exercise DeepAR Estimator.html |
8.05Кб |
09. Gaussian Class-TVzNdFYyJIU.en.vtt |
2.11Кб |
09. Gaussian Class-TVzNdFYyJIU.mp4 |
6.04Мб |
09. Gaussian Class-TVzNdFYyJIU.pt-BR.vtt |
2.11Кб |
09. Gaussian Class-TVzNdFYyJIU.zh-CN.vtt |
1.84Кб |
09. IDs and Classes.html |
10.70Кб |
09. IDs and Classes-jnfDqdxDbO4.en.vtt |
3.41Кб |
09. IDs and Classes-jnfDqdxDbO4.mp4 |
4.43Мб |
09. IDs and Classes-jnfDqdxDbO4.pt-BR.vtt |
3.84Кб |
09. IDs and Classes-jnfDqdxDbO4.zh-CN.vtt |
3.10Кб |
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.en.vtt |
2.10Кб |
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.mp4 |
8.40Мб |
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.pt-BR.vtt |
2.42Кб |
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.zh-CN.vtt |
1.83Кб |
09. Log Messages.html |
7.71Кб |
09. Machine Learning Applications.html |
10.32Кб |
09. PyTorch Estimator.html |
6.81Кб |
09. SageMaker Retrospective.html |
8.93Кб |
09. Solution Training Job.html |
7.65Кб |
09. TensorDataset _ Batching Data.html |
7.94Кб |
09. Word2Vec.html |
6.31Кб |
09. Word2Vec-7jjappzGRe0.en.vtt |
3.42Кб |
09. Word2Vec-7jjappzGRe0.mp4 |
2.98Мб |
09. Word2Vec-7jjappzGRe0.pt-BR.vtt |
3.81Кб |
09. Word2Vec-7jjappzGRe0.zh-CN.vtt |
2.84Кб |
09. Writing READMEs with Walter.html |
8.20Кб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.ar.vtt |
1.50Кб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.en.vtt |
1.34Кб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.ja-JP.vtt |
1.48Кб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.mp4 |
6.92Мб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.pt-BR.vtt |
1.22Кб |
09. Writing READMEs with Walter-DQEfT2Zq5_o.zh-CN.vtt |
1.18Кб |
1. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url |
286б |
10. 03 Optimizing Common Books V1-WF9n_19V08g.en.vtt |
4.90Кб |
10. 03 Optimizing Common Books V1-WF9n_19V08g.mp4 |
8.10Мб |
10. 03 Optimizing Common Books V1-WF9n_19V08g.pt-BR.vtt |
5.58Кб |
10. 03 Optimizing Common Books V1-WF9n_19V08g.zh-CN.vtt |
4.60Кб |
10. 06 Defining Model V2-_LWzyqq4hCY.en.vtt |
5.76Кб |
10. 06 Defining Model V2-_LWzyqq4hCY.mp4 |
9.05Мб |
10. 06 Defining Model V2-_LWzyqq4hCY.pt-BR.vtt |
5.99Кб |
10. 06 Defining Model V2-_LWzyqq4hCY.zh-CN.vtt |
4.87Кб |
10. 07 Training The Network V1-904bfqibcCw.en.vtt |
6.54Кб |
10. 07 Training The Network V1-904bfqibcCw.mp4 |
10.52Мб |
10. 07 Training The Network V1-904bfqibcCw.pt-BR.vtt |
6.12Кб |
10. 07 Training The Network V1-904bfqibcCw.zh-CN.vtt |
5.40Кб |
10. 08 Complete Estimator Hyperparams V2-ah7muNBc3dI.en.vtt |
2.77Кб |
10. 08 Complete Estimator Hyperparams V2-ah7muNBc3dI.mp4 |
5.99Мб |
10. 9 DefiningModel V1-SpvIZl1YQRI.en.vtt |
5.05Кб |
10. 9 DefiningModel V1-SpvIZl1YQRI.mp4 |
5.63Мб |
10. 9 DefiningModel V1-SpvIZl1YQRI.zh-CN.vtt |
4.06Кб |
10. Boston Housing Example - Testing the Model.html |
8.12Кб |
10. Building an API.html |
7.78Кб |
10. Cleaning Up Your AWS Account.html |
8.67Кб |
10. Defining the Model.html |
7.08Кб |
10. Defining the Model.html |
6.70Кб |
10. Deployment L2 C6 V1-CZRKuS_qYtg.en.vtt |
6.21Кб |
10. Deployment L2 C6 V1-CZRKuS_qYtg.mp4 |
10.05Мб |
10. Deployment L2 C6 V1-CZRKuS_qYtg.zh-CN.vtt |
5.09Кб |
10. Deployment L3 C7 V1-AzBQ-aDQSG4.en.vtt |
5.16Кб |
10. Deployment L3 C7 V1-AzBQ-aDQSG4.mp4 |
7.75Мб |
10. Deployment L3 C7 V1-AzBQ-aDQSG4.zh-CN.vtt |
4.28Кб |
10. Deployment L5 C9 V1-8z24cb3EfMc.en.vtt |
3.78Кб |
10. Deployment L5 C9 V1-8z24cb3EfMc.mp4 |
4.43Мб |
10. Deployment L5 C9 V1-8z24cb3EfMc.zh-CN.vtt |
3.04Кб |
10. Dog Project Workspace.html |
7.00Кб |
10. Exercise Create a PyTorchModel _ Endpoint.html |
9.50Кб |
10. Exercise HTML Div, Span, IDs, Classes.html |
8.84Кб |
10. GloVe.html |
6.31Кб |
10. GloVe-KK3PMIiIn8o.en.vtt |
4.21Кб |
10. GloVe-KK3PMIiIn8o.mp4 |
3.81Мб |
10. GloVe-KK3PMIiIn8o.pt-BR.vtt |
4.55Кб |
10. GloVe-KK3PMIiIn8o.zh-CN.vtt |
3.60Кб |
10. How the Gaussian Class Works.html |
8.88Кб |
10. How The Gaussian Class Works-N-5I0d1zJHI.en.vtt |
5.25Кб |
10. How The Gaussian Class Works-N-5I0d1zJHI.mp4 |
8.09Мб |
10. How The Gaussian Class Works-N-5I0d1zJHI.pt-BR.vtt |
4.83Кб |
10. How The Gaussian Class Works-N-5I0d1zJHI.zh-CN.vtt |
4.55Кб |
10. Interview with Art - Part 2.html |
7.93Кб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.ar.vtt |
2.82Кб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.en.vtt |
2.16Кб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.ja-JP.vtt |
2.53Кб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4 |
13.17Мб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.pt-BR.vtt |
2.40Кб |
10. Interview with Art - Part 2-Vvzl2J5K7-Y.zh-CN.vtt |
2.07Кб |
10. Logging.html |
7.86Кб |
10. Optimizing - Common Books.html |
8.32Кб |
10. Paths to Deployment.html |
15.35Кб |
10. Precision _ Recall, Overview.html |
8.60Кб |
10. Pre-Notebook Convolutional Autoencoder.html |
9.25Кб |
10. Pre-Notebook Population Segmentation.html |
10.57Кб |
10. Reaching Out on LinkedIn.html |
9.36Кб |
10. Solution Complete Estimator _ Hyperparameters.html |
6.93Кб |
10. Summary.html |
7.59Кб |
10. Training the Network.html |
12.43Кб |
11. 07 CharRNN Solution V1-ed33qePHrJM.en.vtt |
11.40Кб |
11. 07 CharRNN Solution V1-ed33qePHrJM.mp4 |
18.32Мб |
11. 07 CharRNN Solution V1-ed33qePHrJM.pt-BR.vtt |
11.12Кб |
11. 07 CharRNN Solution V1-ed33qePHrJM.zh-CN.vtt |
9.32Кб |
11. 11 Making Predictions V2-BKOYIfgjsq8.en.vtt |
5.96Кб |
11. 11 Making Predictions V2-BKOYIfgjsq8.mp4 |
14.11Мб |
11. 28 PyTorch Deployment Evaluation V2-qZTyQqo9FWM.en.vtt |
5.12Кб |
11. 28 PyTorch Deployment Evaluation V2-qZTyQqo9FWM.mp4 |
13.28Мб |
11. 28 PyTorch Deployment Evaluation V2-qZTyQqo9FWM.zh-CN.vtt |
4.42Кб |
11. Boost Your Visibility.html |
8.58Кб |
11. Char-RNN, Solution.html |
8.46Кб |
11. Code Review.html |
7.50Кб |
11. Commit messages best practices.html |
10.12Кб |
11. Complete Sentiment RNN.html |
12.93Кб |
11. CSS.html |
17.00Кб |
11. CSS-s_sdzHR9cs0.en.vtt |
9.85Кб |
11. CSS-s_sdzHR9cs0.mp4 |
15.91Мб |
11. CSS-s_sdzHR9cs0.pt-BR.vtt |
10.17Кб |
11. CSS-s_sdzHR9cs0.zh-CN.vtt |
8.88Кб |
11. Deployment L2 C7 V1-ouLvRqMMbbY.en.vtt |
2.85Кб |
11. Deployment L2 C7 V1-ouLvRqMMbbY.mp4 |
6.15Мб |
11. Deployment L2 C7 V1-ouLvRqMMbbY.zh-CN.vtt |
2.42Кб |
11. Deployment L3 C8 V1-VgG41Q_a15I.en.vtt |
5.10Кб |
11. Deployment L3 C8 V1-VgG41Q_a15I.mp4 |
8.10Мб |
11. Deployment L3 C8 V1-VgG41Q_a15I.zh-CN.vtt |
4.24Кб |
11. Deployment L5 C10 V1-ilnX9rUlV_w.en.vtt |
6.24Кб |
11. Deployment L5 C10 V1-ilnX9rUlV_w.mp4 |
8.21Мб |
11. Deployment L5 C10 V1-ilnX9rUlV_w.zh-CN.vtt |
5.07Кб |
11. Embeddings for Deep Learning.html |
6.47Кб |
11. Embeddings For Deep Learning-gj8u1KG0H2w.en.vtt |
5.11Кб |
11. Embeddings For Deep Learning-gj8u1KG0H2w.mp4 |
4.70Мб |
11. Embeddings For Deep Learning-gj8u1KG0H2w.pt-BR.vtt |
5.60Кб |
11. Embeddings For Deep Learning-gj8u1KG0H2w.zh-CN.vtt |
4.74Кб |
11. Exercise Code the Gaussian Class.html |
9.07Кб |
11. Exercise Data Loading _ Processing.html |
8.73Кб |
11. Exercise Deploy Estimator.html |
9.12Кб |
11. L1C4 DataLoading Processing 2 V2-YlG9T17KcbU.en.vtt |
10.89Кб |
11. L1C4 DataLoading Processing 2 V2-YlG9T17KcbU.mp4 |
26.27Мб |
11. L1C4 DataLoading Processing 2 V2-YlG9T17KcbU.zh-CN.vtt |
9.36Кб |
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.en.vtt |
1.02Кб |
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.mp4 |
3.30Мб |
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.pt-BR.vtt |
1.21Кб |
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.zh-CN.vtt |
966б |
11. Making Predictions.html |
6.82Кб |
11. Mini-Project Building Your First Model.html |
8.92Кб |
11. Notebook Convolutional Autoencoder.html |
7.58Кб |
11. Paths to Deployment.html |
9.40Кб |
11. Pre-Notebook MLP Classification, Exercise.html |
11.89Кб |
11. Quiz Optimizing - Common Books.html |
8.36Кб |
11. SageMaker Tips and Tricks.html |
7.43Кб |
11. Selecting One Project.html |
7.50Кб |
11. Solution PyTorchModel _ Evaluation.html |
6.87Кб |
11. Using the Final Web Application.html |
8.29Кб |
12. 08 Making Predictions V3-BhrpV3kwATo.en.vtt |
8.77Кб |
12. 08 Making Predictions V3-BhrpV3kwATo.mp4 |
12.38Мб |
12. 08 Making Predictions V3-BhrpV3kwATo.pt-BR.vtt |
8.92Кб |
12. 08 Making Predictions V3-BhrpV3kwATo.zh-CN.vtt |
7.11Кб |
12. 092 Deployment Evaluation V1-ZknaWInjSa4.en.vtt |
6.59Кб |
12. 092 Deployment Evaluation V1-ZknaWInjSa4.mp4 |
14.95Мб |
12. 092 Deployment Evaluation V1-ZknaWInjSa4.zh-CN.vtt |
5.58Кб |
12. 8 Conv Solution V1-2_Yw9LLomCo.en.vtt |
5.24Кб |
12. 8 Conv Solution V1-2_Yw9LLomCo.mp4 |
7.82Мб |
12. 8 Conv Solution V1-2_Yw9LLomCo.pt-BR.vtt |
5.01Кб |
12. Clean Up All Resources.html |
10.95Кб |
12. Convolutional Solution.html |
7.50Кб |
12. Deployment L2 C8 V1-utUxiW-tZrY.en.vtt |
7.01Кб |
12. Deployment L2 C8 V1-utUxiW-tZrY.mp4 |
10.90Мб |
12. Deployment L2 C8 V1-utUxiW-tZrY.zh-CN.vtt |
5.57Кб |
12. Exercise CSS.html |
8.78Кб |
12. Exercise Predicting the Future.html |
8.68Кб |
12. L1C5 Data PreProcessing Solution-2jUouM70A1I.en.vtt |
8.07Кб |
12. L1C5 Data PreProcessing Solution-2jUouM70A1I.mp4 |
11.98Мб |
12. L1C5 Data PreProcessing Solution-2jUouM70A1I.zh-CN.vtt |
6.77Кб |
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.en.vtt |
2.34Кб |
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.mp4 |
4.95Мб |
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.pt-BR.vtt |
2.23Кб |
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.zh-CN.vtt |
1.95Кб |
12. Magic Methods.html |
9.48Кб |
12. Magic Methods in Code-oDuXThOqans.en.vtt |
4.09Кб |
12. Magic Methods in Code-oDuXThOqans.mp4 |
4.36Мб |
12. Magic Methods in Code-oDuXThOqans.pt-BR.vtt |
3.77Кб |
12. Magic Methods in Code-oDuXThOqans.zh-CN.vtt |
3.51Кб |
12. Making Predictions.html |
7.47Кб |
12. Mini-Project Solution.html |
7.48Кб |
12. Modeling.html |
6.21Кб |
12. Modeling-P4w_2rkxBvE.en.vtt |
1.29Кб |
12. Modeling-P4w_2rkxBvE.mp4 |
2.60Мб |
12. Modeling-P4w_2rkxBvE.pt-BR.vtt |
1.44Кб |
12. Modeling-P4w_2rkxBvE.zh-CN.vtt |
1.10Кб |
12. Notebook MLP Classification, MNIST.html |
11.01Кб |
12. Production Environment-BH23Me3bbF4.en.vtt |
2.91Кб |
12. Production Environment-BH23Me3bbF4.mp4 |
7.14Мб |
12. Production Environment-BH23Me3bbF4.zh-CN.vtt |
2.39Кб |
12. Production Environments.html |
8.16Кб |
12. Questions to Ask Yourself When Conducting a Code Review.html |
8.34Кб |
12. Reflect on your commit messages-_0AHmKkfjTo.ar.vtt |
678б |
12. Reflect on your commit messages-_0AHmKkfjTo.en.vtt |
501б |
12. Reflect on your commit messages-_0AHmKkfjTo.ja-JP.vtt |
610б |
12. Reflect on your commit messages-_0AHmKkfjTo.mp4 |
3.03Мб |
12. Reflect on your commit messages-_0AHmKkfjTo.pt-BR.vtt |
538б |
12. Reflect on your commit messages-_0AHmKkfjTo.zh-CN.vtt |
473б |
12. Reflect on your commit messages.html |
8.55Кб |
12. Solution Data Pre-Processing.html |
8.69Кб |
12. Solution Deployment _ Evaluation.html |
7.71Кб |
12. Solution Optimizing - Common Books.html |
8.37Кб |
12. Summary.html |
8.46Кб |
12. Training the Model.html |
13.30Кб |
12. Up Next.html |
8.09Кб |
13. 09 One Solution V2-7q37WPjQhDA.en.vtt |
7.93Кб |
13. 09 One Solution V2-7q37WPjQhDA.mp4 |
11.59Мб |
13. 09 One Solution V2-7q37WPjQhDA.pt-BR.vtt |
7.60Кб |
13. 09 One Solution V2-7q37WPjQhDA.zh-CN.vtt |
6.66Кб |
13. 10 Model Improvements V1-JjZMuUnxKw4.en.vtt |
2.62Кб |
13. 10 Model Improvements V1-JjZMuUnxKw4.mp4 |
3.48Мб |
13. 10 Model Improvements V1-JjZMuUnxKw4.zh-CN.vtt |
2.33Кб |
13. 13 Predicting Future Data V2-HT5xKDOgHYw.en.vtt |
2.89Кб |
13. 13 Predicting Future Data V2-HT5xKDOgHYw.mp4 |
5.38Мб |
13. 9 Upsampling Denoising V2-XX63da4EPN0.en.vtt |
4.41Кб |
13. 9 Upsampling Denoising V2-XX63da4EPN0.mp4 |
5.69Мб |
13. 9 Upsampling Denoising V2-XX63da4EPN0.pt-BR.vtt |
4.15Кб |
13. Bootstrap Library.html |
10.02Кб |
13. Bootstrap Library-KsrqjguHWUI.en.vtt |
18.08Кб |
13. Bootstrap Library-KsrqjguHWUI.mp4 |
26.36Мб |
13. Bootstrap Library-KsrqjguHWUI.pt-BR.vtt |
16.37Кб |
13. Bootstrap Library-KsrqjguHWUI.zh-CN.vtt |
15.79Кб |
13. Boston Housing In-Depth - Data Preparation.html |
9.14Кб |
13. Deployment L2 C9b V2-TA-Ms7djeL0.en.vtt |
4.90Кб |
13. Deployment L2 C9b V2-TA-Ms7djeL0.mp4 |
7.57Мб |
13. Deployment L2 C9b V2-TA-Ms7djeL0.zh-CN.vtt |
4.22Кб |
13. Exercise Code Magic Methods.html |
9.05Кб |
13. Exercise Normalization.html |
9.96Кб |
13. Model Improvements.html |
7.65Кб |
13. One Solution.html |
11.99Кб |
13. Participating in open source projects.html |
8.32Кб |
13. Participating in open source projects-OxL-gMTizUA.ar.vtt |
768б |
13. Participating in open source projects-OxL-gMTizUA.en.vtt |
476б |
13. Participating in open source projects-OxL-gMTizUA.ja-JP.vtt |
599б |
13. Participating in open source projects-OxL-gMTizUA.mp4 |
2.77Мб |
13. Participating in open source projects-OxL-gMTizUA.pt-BR.vtt |
551б |
13. Participating in open source projects-OxL-gMTizUA.zh-CN.vtt |
438б |
13. Production Environments.html |
10.84Кб |
13. Quiz Optimizing - Holiday Gifts.html |
8.37Кб |
13. Solution Predicting Future Data.html |
6.87Кб |
13. Summary of Skills.html |
7.94Кб |
13. Testing.html |
10.57Кб |
13. Tips for Conducting a Code Review.html |
11.01Кб |
13. Upsampling _ Denoising.html |
7.58Кб |
14. 10 Denoising V1-RIfEhKev24I.en.vtt |
3.96Кб |
14. 10 Denoising V1-RIfEhKev24I.mp4 |
6.00Мб |
14. 10 Denoising V1-RIfEhKev24I.pt-BR.vtt |
3.78Кб |
14. 11 Model Tuning V1-bb7zG0TdtRM.en.vtt |
4.51Кб |
14. 11 Model Tuning V1-bb7zG0TdtRM.mp4 |
11.36Мб |
14. 11 Model Tuning V1-bb7zG0TdtRM.zh-CN.vtt |
3.79Кб |
14. 13 Inheritance Example V1-uWT-HIHBjv0.en.vtt |
1.93Кб |
14. 13 Inheritance Example V1-uWT-HIHBjv0.mp4 |
2.00Мб |
14. 13 Inheritance Example V1-uWT-HIHBjv0.pt-BR.vtt |
1.91Кб |
14. 13 Inheritance Example V1-uWT-HIHBjv0.zh-CN.vtt |
1.64Кб |
14. Boston Housing In-Depth - Creating a Training Job.html |
7.57Кб |
14. Clean Up All Resources.html |
11.01Кб |
14. Conclusion.html |
6.74Кб |
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.en.vtt |
4.62Кб |
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.mp4 |
3.34Мб |
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.pt-BR.vtt |
4.35Кб |
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.zh-CN.vtt |
3.83Кб |
14. De-noising.html |
6.98Кб |
14. Deployment L2 C10b V1-1CIbWNUSZXo.en.vtt |
6.51Кб |
14. Deployment L2 C10b V1-1CIbWNUSZXo.mp4 |
16.82Мб |
14. Deployment L2 C10b V1-1CIbWNUSZXo.zh-CN.vtt |
5.38Кб |
14. Endpoints _ REST APIs.html |
16.98Кб |
14. Exercise Bootstrap.html |
8.79Кб |
14. Improvement, Model Tuning.html |
7.66Кб |
14. Inference, Solution.html |
13.23Кб |
14. Inheritance.html |
11.07Кб |
14. Inheritance-1gsrxUwPI40.en.vtt |
2.64Кб |
14. Inheritance-1gsrxUwPI40.mp4 |
3.52Мб |
14. Inheritance-1gsrxUwPI40.pt-BR.vtt |
2.44Кб |
14. Inheritance-1gsrxUwPI40.zh-CN.vtt |
2.27Кб |
14. Interview with Art - Part 3.html |
7.94Кб |
14. Interview with Art - Part 3-M6PKr3S1rPg.ar.vtt |
5.33Кб |
14. Interview with Art - Part 3-M6PKr3S1rPg.en.vtt |
4.10Кб |
14. Interview with Art - Part 3-M6PKr3S1rPg.ja-JP.vtt |
4.71Кб |
14. Interview with Art - Part 3-M6PKr3S1rPg.mp4 |
25.04Мб |
14. Interview with Art - Part 3-M6PKr3S1rPg.pt-BR.vtt |
4.56Кб |
14. Interview with Art - Part 3-M6PKr3S1rPg.zh-CN.vtt |
3.67Кб |
14. L1C7 Normalization Solution V3-UDWwdG4e1a0.en.vtt |
3.01Кб |
14. L1C7 Normalization Solution V3-UDWwdG4e1a0.mp4 |
3.40Мб |
14. L1C7 Normalization Solution V3-UDWwdG4e1a0.zh-CN.vtt |
2.50Кб |
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.en.vtt |
671б |
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.mp4 |
2.06Мб |
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.pt-BR.vtt |
841б |
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.zh-CN.vtt |
547б |
14. Model Validation.html |
10.61Кб |
14. Solution Normalization.html |
8.66Кб |
14. Solution Optimizing - Holiday Gifts.html |
8.36Кб |
15. 11 Validation Loss V2-uGPP_-pbBsc.en.vtt |
8.76Кб |
15. 11 Validation Loss V2-uGPP_-pbBsc.mp4 |
14.23Мб |
15. 11 Validation Loss V2-uGPP_-pbBsc.pt-BR.vtt |
8.43Кб |
15. 11 Validation Loss V2-uGPP_-pbBsc.zh-CN.vtt |
7.34Кб |
15. 14 Screencast JavaScript V2-vgXUKgsT_48.en.vtt |
7.92Кб |
15. 14 Screencast JavaScript V2-vgXUKgsT_48.mp4 |
9.67Мб |
15. 14 Screencast JavaScript V2-vgXUKgsT_48.pt-BR.vtt |
7.39Кб |
15. 14 Screencast JavaScript V2-vgXUKgsT_48.zh-CN.vtt |
7.08Кб |
15. Boston Housing In-Depth - Building a Model.html |
7.56Кб |
15. Deployment L2 C11b V1-JJyVsmcV2M4.en.vtt |
6.04Кб |
15. Deployment L2 C11b V1-JJyVsmcV2M4.mp4 |
10.78Мб |
15. Deployment L2 C11b V1-JJyVsmcV2M4.zh-CN.vtt |
5.10Кб |
15. Documentation.html |
8.65Кб |
15. Endpoints _ REST APIs.html |
14.92Кб |
15. Exercise Improvement, Class Imbalance.html |
10.53Кб |
15. Exercise Inheritance with Clothing.html |
9.09Кб |
15. JavaScript.html |
16.11Кб |
15. L2 10 Documentation V1 V3-M45B2VbPgjo.en.vtt |
1.51Кб |
15. L2 10 Documentation V1 V3-M45B2VbPgjo.mp4 |
4.38Мб |
15. L2 10 Documentation V1 V3-M45B2VbPgjo.pt-BR.vtt |
1.75Кб |
15. L2 10 Documentation V1 V3-M45B2VbPgjo.zh-CN.vtt |
1.35Кб |
15. Participating in open source projects 2.html |
8.05Кб |
15. Participating in open source projects 2-elZCLxVvJrY.ar.vtt |
2.16Кб |
15. Participating in open source projects 2-elZCLxVvJrY.en.vtt |
1.46Кб |
15. Participating in open source projects 2-elZCLxVvJrY.ja-JP.vtt |
1.81Кб |
15. Participating in open source projects 2-elZCLxVvJrY.mp4 |
3.30Мб |
15. Participating in open source projects 2-elZCLxVvJrY.pt-BR.vtt |
1.69Кб |
15. Participating in open source projects 2-elZCLxVvJrY.zh-CN.vtt |
1.30Кб |
15. PCA, Overview.html |
10.12Кб |
15. PCA Toy Problem SC V1-uyl44T12yU8.en.vtt |
9.88Кб |
15. PCA Toy Problem SC V1-uyl44T12yU8.mp4 |
15.15Мб |
15. PCA Toy Problem SC V1-uyl44T12yU8.zh-CN.vtt |
8.10Кб |
15. Pre-Notebook De-noising Autoencoder.html |
9.20Кб |
15. Validation Loss.html |
11.49Кб |
16. 04 Inline Comments V1--G6yg3Xhl8I.en.vtt |
2.38Кб |
16. 04 Inline Comments V1--G6yg3Xhl8I.mp4 |
3.54Мб |
16. 04 Inline Comments V1--G6yg3Xhl8I.pt-BR.vtt |
2.87Кб |
16. 04 Inline Comments V1--G6yg3Xhl8I.zh-CN.vtt |
2.26Кб |
16. 13 Class Balancing Solution V1-ncoPZdiVLJg.en.vtt |
3.29Кб |
16. 13 Class Balancing Solution V1-ncoPZdiVLJg.mp4 |
7.25Мб |
16. 13 Class Balancing Solution V1-ncoPZdiVLJg.zh-CN.vtt |
2.91Кб |
16. Boston Housing In-Depth - Creating a Batch Transform Job.html |
7.55Кб |
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.en.vtt |
1.75Кб |
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.mp4 |
2.40Мб |
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.pt-BR.vtt |
1.67Кб |
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.zh-CN.vtt |
1.45Кб |
16. Containers.html |
15.59Кб |
16. Deployment L2 C12 V1-JwPJMYRl3nw.en.vtt |
4.21Кб |
16. Deployment L2 C12 V1-JwPJMYRl3nw.mp4 |
7.25Мб |
16. Deployment L2 C12 V1-JwPJMYRl3nw.zh-CN.vtt |
3.47Кб |
16. Exercise JavaScript.html |
8.79Кб |
16. Image Classification Steps.html |
10.66Кб |
16. Inheritance Gaussian Class-XS4LQn1VA3U.en.vtt |
2.91Кб |
16. Inheritance Gaussian Class-XS4LQn1VA3U.mp4 |
3.47Мб |
16. Inheritance Gaussian Class-XS4LQn1VA3U.pt-BR.vtt |
2.84Кб |
16. Inheritance Gaussian Class-XS4LQn1VA3U.zh-CN.vtt |
2.47Кб |
16. Inheritance Probability Distribution.html |
8.90Кб |
16. In-line Comments.html |
8.89Кб |
16. L1C8 PCA Estimator V2-HGEqgi2MKcU.en.vtt |
12.25Кб |
16. L1C8 PCA Estimator V2-HGEqgi2MKcU.mp4 |
19.78Мб |
16. L1C8 PCA Estimator V2-HGEqgi2MKcU.zh-CN.vtt |
10.65Кб |
16. Notebook De-noising Autoencoder.html |
7.45Кб |
16. PCA Estimator _ Training.html |
8.67Кб |
16. Solution Accounting for Class Imbalance.html |
7.75Кб |
16. Starring interesting repositories.html |
9.46Кб |
16. Starring interesting repositories-U3FUxkm1MxI.ar.vtt |
542б |
16. Starring interesting repositories-U3FUxkm1MxI.en.vtt |
419б |
16. Starring interesting repositories-U3FUxkm1MxI.ja-JP.vtt |
492б |
16. Starring interesting repositories-U3FUxkm1MxI.mp4 |
2.45Мб |
16. Starring interesting repositories-U3FUxkm1MxI.pt-BR.vtt |
460б |
16. Starring interesting repositories-U3FUxkm1MxI.zh-CN.vtt |
392б |
16. Starring interesting repositories-ZwMY5rAAd7Q.ar.vtt |
812б |
16. Starring interesting repositories-ZwMY5rAAd7Q.en.vtt |
634б |
16. Starring interesting repositories-ZwMY5rAAd7Q.ja-JP.vtt |
777б |
16. Starring interesting repositories-ZwMY5rAAd7Q.mp4 |
1.47Мб |
16. Starring interesting repositories-ZwMY5rAAd7Q.pt-BR.vtt |
705б |
16. Starring interesting repositories-ZwMY5rAAd7Q.zh-CN.vtt |
556б |
17. 05 Docstrings V1-_gapemxsRJY.en.vtt |
1.71Кб |
17. 05 Docstrings V1-_gapemxsRJY.mp4 |
1.66Мб |
17. 05 Docstrings V1-_gapemxsRJY.pt-BR.vtt |
1.99Кб |
17. 05 Docstrings V1-_gapemxsRJY.zh-CN.vtt |
1.50Кб |
17. 18 Screencast Plotly V2-QsmOW1jNeio.en.vtt |
11.64Кб |
17. 18 Screencast Plotly V2-QsmOW1jNeio.mp4 |
14.79Мб |
17. 18 Screencast Plotly V2-QsmOW1jNeio.pt-BR.vtt |
10.82Кб |
17. 18 Screencast Plotly V2-QsmOW1jNeio.zh-CN.vtt |
10.41Кб |
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.en.vtt |
3.04Кб |
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.mp4 |
4.24Мб |
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.pt-BR.vtt |
2.97Кб |
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.zh-CN.vtt |
2.56Кб |
17. Containers.html |
11.33Кб |
17. Demo Inheritance Probability Distributions.html |
9.10Кб |
17. Docstrings.html |
9.99Кб |
17. Exercise Define a Model w Specifications.html |
10.08Кб |
17. Exercise PCA Model Attributes _ Variance.html |
8.73Кб |
17. L1C9 PCA Attributes Variance V3-dumVafbS7pk.en.vtt |
10.38Кб |
17. L1C9 PCA Attributes Variance V3-dumVafbS7pk.mp4 |
16.38Мб |
17. L1C9 PCA Attributes Variance V3-dumVafbS7pk.zh-CN.vtt |
8.67Кб |
17. MLPs vs CNNs.html |
10.88Кб |
17. Next Steps.html |
8.08Кб |
17. Plotly.html |
11.30Кб |
17. Summary.html |
11.01Кб |
18. Advanced OOP Topics.html |
9.82Кб |
18. Containers - Straight From the Experts.html |
9.82Кб |
18. Exercise Plotly.html |
8.78Кб |
18. Jesse Swidler Interview on Containers-XimuK3WHOH4.en.vtt |
6.73Кб |
18. Jesse Swidler Interview on Containers-XimuK3WHOH4.mp4 |
42.11Мб |
18. Jesse Swidler Interview on Containers-XimuK3WHOH4.zh-CN.vtt |
5.64Кб |
18. L1C10 Variance Solution V3-C-BRBjxlUuE.en.vtt |
4.44Кб |
18. L1C10 Variance Solution V3-C-BRBjxlUuE.mp4 |
6.95Мб |
18. L1C10 Variance Solution V3-C-BRBjxlUuE.zh-CN.vtt |
3.62Кб |
18. Local Connectivity.html |
10.58Кб |
18. Local Connectivity-z9wiDg0w-Dc.en.vtt |
8.95Кб |
18. Local Connectivity-z9wiDg0w-Dc.mp4 |
12.02Мб |
18. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt |
9.29Кб |
18. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt |
7.62Кб |
18. One Solution Tuned and Balanced LinearLearner.html |
10.89Кб |
18. Project Documentation.html |
9.23Кб |
18. Solution Variance.html |
8.63Кб |
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.en.vtt |
2.11Кб |
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.mp4 |
2.95Мб |
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.pt-BR.vtt |
2.11Кб |
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.zh-CN.vtt |
1.77Кб |
19. Characteristics of Modeling _ Deployment.html |
16.32Кб |
19. Component Makeup.html |
8.66Кб |
19. Documentation.html |
10.17Кб |
19. Filters and the Convolutional Layer.html |
10.67Кб |
19. L1C11 Component Makeup V2-fiSr_Xjm3qI.en.vtt |
5.93Кб |
19. L1C11 Component Makeup V2-fiSr_Xjm3qI.mp4 |
8.27Мб |
19. L1C11 Component Makeup V2-fiSr_Xjm3qI.zh-CN.vtt |
4.88Кб |
19. L2 03 Summary _ Improvements V2-VsjDz3agnhQ.en.vtt |
1.46Кб |
19. L2 03 Summary _ Improvements V2-VsjDz3agnhQ.mp4 |
5.14Мб |
19. L2 03 Summary _ Improvements V2-VsjDz3agnhQ.zh-CN.vtt |
1.28Кб |
19. L4 The Back End V2-Esl0NL63S2c.en.vtt |
2.38Кб |
19. L4 The Back End V2-Esl0NL63S2c.mp4 |
5.29Мб |
19. L4 The Back End V2-Esl0NL63S2c.pt-BR.vtt |
2.73Кб |
19. L4 The Back End V2-Esl0NL63S2c.zh-CN.vtt |
2.13Кб |
19. Organizing Code Into Modules-AARS10U5bbo.en.vtt |
4.71Кб |
19. Organizing Code Into Modules-AARS10U5bbo.mp4 |
4.49Мб |
19. Organizing Code Into Modules-AARS10U5bbo.pt-BR.vtt |
4.86Кб |
19. Organizing Code Into Modules-AARS10U5bbo.zh-CN.vtt |
4.36Кб |
19. Organizing into Modules.html |
10.55Кб |
19. Summary and Improvements.html |
7.58Кб |
19. The Backend.html |
11.05Кб |
20. 22 Screencast Flask V2-i_U3O-7cymk.en.vtt |
6.58Кб |
20. 22 Screencast Flask V2-i_U3O-7cymk.mp4 |
7.11Мб |
20. 22 Screencast Flask V2-i_U3O-7cymk.pt-BR.vtt |
7.09Кб |
20. 22 Screencast Flask V2-i_U3O-7cymk.zh-CN.vtt |
6.11Кб |
20. Characteristics of Modeling _ Deployment.html |
13.35Кб |
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.en.vtt |
1.61Кб |
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.mp4 |
3.50Мб |
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.pt-BR.vtt |
1.63Кб |
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.zh-CN.vtt |
1.38Кб |
20. Demo Modularized Code.html |
9.04Кб |
20. Exercise PCA Deployment _ Data Transformation.html |
9.00Кб |
20. Filters _ Edges.html |
11.16Кб |
20. Flask.html |
14.40Кб |
20. L1C12 PCA Deployment V1-qsnpHHuwbbA.en.vtt |
4.89Кб |
20. L1C12 PCA Deployment V1-qsnpHHuwbbA.mp4 |
8.02Мб |
20. L1C12 PCA Deployment V1-qsnpHHuwbbA.zh-CN.vtt |
4.31Кб |
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.en.vtt |
867б |
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.mp4 |
2.94Мб |
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.pt-BR.vtt |
995б |
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.zh-CN.vtt |
738б |
20. Version Control in Data Science.html |
8.42Кб |
21. 15 Making a Package v2-Hj2OBr1CGZM.en.vtt |
7.52Кб |
21. 15 Making a Package v2-Hj2OBr1CGZM.mp4 |
7.53Мб |
21. 15 Making a Package v2-Hj2OBr1CGZM.pt-BR.vtt |
7.77Кб |
21. 15 Making a Package v2-Hj2OBr1CGZM.zh-CN.vtt |
6.84Кб |
21. Comparing Cloud Providers.html |
26.79Кб |
21. Exercise Flask.html |
8.78Кб |
21. Frequency in Images.html |
12.82Кб |
21. L1C13 Creating New Data Solution V4-4l2UHyyVV7Y.en.vtt |
6.68Кб |
21. L1C13 Creating New Data Solution V4-4l2UHyyVV7Y.mp4 |
11.83Мб |
21. L1C13 Creating New Data Solution V4-4l2UHyyVV7Y.zh-CN.vtt |
5.61Кб |
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.en.vtt |
3.69Кб |
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.mp4 |
3.93Мб |
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.pt-BR.vtt |
4.30Кб |
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.zh-CN.vtt |
3.13Кб |
21. Making a Package.html |
11.42Кб |
21. Scenario #1.html |
12.26Кб |
21. Solution Creating Transformed Data.html |
8.75Кб |
22. Comparing Cloud Providers.html |
13.59Кб |
22. Exercise K-means Estimator _ Selecting K.html |
13.93Кб |
22. Flask + Pandas.html |
10.65Кб |
22. Flask and Pandas-L_M_8UVY42k.en.vtt |
4.38Кб |
22. Flask and Pandas-L_M_8UVY42k.mp4 |
6.20Мб |
22. Flask and Pandas-L_M_8UVY42k.pt-BR.vtt |
4.81Кб |
22. Flask and Pandas-L_M_8UVY42k.zh-CN.vtt |
3.91Кб |
22. High-pass Filters.html |
11.77Кб |
22. High-pass Filters-OpcFn_H2V-Q.en.vtt |
7.56Кб |
22. High-pass Filters-OpcFn_H2V-Q.mp4 |
8.25Мб |
22. High-pass Filters-OpcFn_H2V-Q.pt-BR.vtt |
8.22Кб |
22. High-pass Filters-OpcFn_H2V-Q.zh-CN.vtt |
6.57Кб |
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.en.vtt |
1.71Кб |
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.mp4 |
1.90Мб |
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.pt-BR.vtt |
1.99Кб |
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.zh-CN.vtt |
1.45Кб |
22. Scenario #2.html |
9.78Кб |
22. Virtual Environments.html |
14.83Кб |
22. Virtual Environments-f7rzxUiHOJ0.en.vtt |
3.25Кб |
22. Virtual Environments-f7rzxUiHOJ0.mp4 |
2.99Мб |
22. Virtual Environments-f7rzxUiHOJ0.pt-BR.vtt |
3.33Кб |
22. Virtual Environments-f7rzxUiHOJ0.zh-CN.vtt |
3.04Кб |
23. Closing Remarks On Deployment-fXl_MCYzcOU.en.vtt |
1.92Кб |
23. Closing Remarks On Deployment-fXl_MCYzcOU.mp4 |
4.52Мб |
23. Closing Remarks On Deployment-fXl_MCYzcOU.zh-CN.vtt |
1.65Кб |
23. Closing Statements.html |
8.16Кб |
23. Example Flask + Pandas.html |
8.82Кб |
23. Exercise K-means Predictions (clusters).html |
9.74Кб |
23. Exercise Making a Package and Pip Installing.html |
9.10Кб |
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.en.vtt |
1.57Кб |
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.mp4 |
3.04Мб |
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.pt-BR.vtt |
1.87Кб |
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.zh-CN.vtt |
1.37Кб |
23. Quiz Kernels.html |
11.68Кб |
23. Scenario #3.html |
12.01Кб |
24. Binomial Class.html |
9.50Кб |
24. Binomial Class-O-4qRh74rkI.en.vtt |
1.27Кб |
24. Binomial Class-O-4qRh74rkI.mp4 |
3.44Мб |
24. Binomial Class-O-4qRh74rkI.pt-BR.vtt |
1.38Кб |
24. Binomial Class-O-4qRh74rkI.zh-CN.vtt |
1.11Кб |
24. Binomial Class-xTamXY6Z9Kg.en.vtt |
3.35Кб |
24. Binomial Class-xTamXY6Z9Kg.mp4 |
4.33Мб |
24. Binomial Class-xTamXY6Z9Kg.pt-BR.vtt |
3.30Кб |
24. Binomial Class-xTamXY6Z9Kg.zh-CN.vtt |
3.05Кб |
24. Flask+Plotly+Pandas Part 1.html |
11.75Кб |
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.en.vtt |
4.66Кб |
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.mp4 |
6.68Мб |
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.pt-BR.vtt |
5.01Кб |
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.zh-CN.vtt |
4.16Кб |
24. L1C15 Kmeans Solutioni V2-0xx2p2vnCg0.en.vtt |
8.39Кб |
24. L1C15 Kmeans Solutioni V2-0xx2p2vnCg0.mp4 |
13.02Мб |
24. L1C15 Kmeans Solutioni V2-0xx2p2vnCg0.zh-CN.vtt |
7.09Кб |
24. Model Versioning.html |
8.55Кб |
24. OpenCV _ Creating Custom Filters.html |
12.95Кб |
24. Solution K-means Predictor.html |
8.67Кб |
24. Summary.html |
8.88Кб |
25. [Optional] Cloud Computing Defined.html |
36.25Кб |
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.en.vtt |
6.91Кб |
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.mp4 |
7.90Мб |
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.pt-BR.vtt |
7.07Кб |
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.zh-CN.vtt |
6.29Кб |
25. Conclusion.html |
7.91Кб |
25. Exercise Binomial Class.html |
9.05Кб |
25. Exercise Get the Model Attributes.html |
10.55Кб |
25. Flask+Plotly+Pandas Part 2.html |
10.42Кб |
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.en.vtt |
816б |
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.mp4 |
2.84Мб |
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.pt-BR.vtt |
984б |
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.zh-CN.vtt |
739б |
25. Notebook Finding Edges.html |
10.98Кб |
26. [Optional] Cloud Computing Explained.html |
46.41Кб |
26. Convolutional Layer.html |
13.05Кб |
26. Flask+Plotly+Pandas Part 3.html |
9.91Кб |
26. Flask Pandas Plotly Part3-e8owK5zk-g8.en.vtt |
1.83Кб |
26. Flask Pandas Plotly Part3-e8owK5zk-g8.mp4 |
2.95Мб |
26. Flask Pandas Plotly Part3-e8owK5zk-g8.pt-BR.vtt |
1.93Кб |
26. Flask Pandas Plotly Part3-e8owK5zk-g8.zh-CN.vtt |
1.74Кб |
26. L1C17 Model Attributes Conclusions V2-VS-hVhsCBPw.en.vtt |
7.43Кб |
26. L1C17 Model Attributes Conclusions V2-VS-hVhsCBPw.mp4 |
18.66Мб |
26. L1C17 Model Attributes Conclusions V2-VS-hVhsCBPw.zh-CN.vtt |
6.43Кб |
26. Scikit-learn Source Code.html |
9.95Кб |
26. Scikitlearn Source Code-4_qkqMsbthg.en.vtt |
5.56Кб |
26. Scikitlearn Source Code-4_qkqMsbthg.mp4 |
9.62Мб |
26. Scikitlearn Source Code-4_qkqMsbthg.pt-BR.vtt |
5.66Кб |
26. Scikitlearn Source Code-4_qkqMsbthg.zh-CN.vtt |
5.09Кб |
26. Solution Model Attributes.html |
8.71Кб |
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.en.vtt |
9.61Кб |
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.mp4 |
16.29Мб |
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.pt-BR.vtt |
9.98Кб |
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.zh-CN.vtt |
8.81Кб |
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.en.vtt |
10.08Кб |
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.mp4 |
17.06Мб |
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.pt-BR.vtt |
10.17Кб |
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.zh-CN.vtt |
8.84Кб |
27. Camadas convolucionais-RnM1D-XI--8.en.vtt |
9.99Кб |
27. Camadas convolucionais-RnM1D-XI--8.mp4 |
17.05Мб |
27. Camadas convolucionais-RnM1D-XI--8.pt-BR.vtt |
11.00Кб |
27. Camadas convolucionais-RnM1D-XI--8.zh-CN.vtt |
8.71Кб |
27. Clean Up All Resources.html |
12.82Кб |
27. Convolutional Layers (Part 2).html |
11.44Кб |
27. Flask+Plotly+Pandas Part 4.html |
11.19Кб |
27. Putting Code on PyPi.html |
12.18Кб |
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.en.vtt |
3.61Кб |
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.mp4 |
6.09Мб |
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.pt-BR.vtt |
3.86Кб |
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.zh-CN.vtt |
2.97Кб |
28. AWS Workflow _ Summary.html |
8.61Кб |
28. Example Flask + Plotly + Pandas.html |
8.85Кб |
28. Exercise Upload to PyPi.html |
9.04Кб |
28. L1 06 AWS Workflow _ Summary V1 RENDER V3-vMLN832942E.en.vtt |
3.49Кб |
28. L1 06 AWS Workflow _ Summary V1 RENDER V3-vMLN832942E.mp4 |
6.92Мб |
28. L1 06 AWS Workflow _ Summary V1 RENDER V3-vMLN832942E.zh-CN.vtt |
3.03Кб |
28. Stride and Padding.html |
10.62Кб |
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.en.vtt |
2.90Кб |
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.mp4 |
2.98Мб |
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.pt-BR.vtt |
3.20Кб |
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.zh-CN.vtt |
2.35Кб |
29. Exercise Flask + Plotly + Pandas.html |
8.83Кб |
29. L3 21 Outro v1 V2-DStO1hBKtHQ.en.vtt |
2.13Кб |
29. L3 21 Outro v1 V2-DStO1hBKtHQ.mp4 |
6.15Мб |
29. L3 21 Outro v1 V2-DStO1hBKtHQ.pt-BR.vtt |
2.32Кб |
29. L3 21 Outro v1 V2-DStO1hBKtHQ.zh-CN.vtt |
1.95Кб |
29. Lesson Summary.html |
9.20Кб |
29. Pooling Layers.html |
12.63Кб |
3. (FTUApps.com) Download Cracked Developers Applications For Free.url |
239б |
30. Deployment.html |
18.13Кб |
30. Deployment-YPfNzpnm_Rk.en.vtt |
13.81Кб |
30. Deployment-YPfNzpnm_Rk.mp4 |
19.37Мб |
30. Deployment-YPfNzpnm_Rk.pt-BR.vtt |
13.64Кб |
30. Deployment-YPfNzpnm_Rk.zh-CN.vtt |
12.59Кб |
30. Notebook Layer Visualization.html |
10.99Кб |
31. Capsule Networks.html |
14.67Кб |
31. Exercise Deployment.html |
8.80Кб |
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.en.vtt |
4.23Кб |
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.mp4 |
4.90Мб |
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.pt-BR.vtt |
4.41Кб |
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.zh-CN.vtt |
3.55Кб |
32. Increasing Depth.html |
10.69Кб |
32. L4 Outro V2-8MyuJx5yu38.en.vtt |
1.36Кб |
32. L4 Outro V2-8MyuJx5yu38.mp4 |
3.09Мб |
32. L4 Outro V2-8MyuJx5yu38.pt-BR.vtt |
1.41Кб |
32. L4 Outro V2-8MyuJx5yu38.zh-CN.vtt |
1.18Кб |
32. Lesson Summary.html |
8.67Кб |
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.en.vtt |
4.74Кб |
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.mp4 |
5.75Мб |
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.pt-BR.vtt |
5.07Кб |
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.zh-CN.vtt |
3.90Кб |
33. CNNs for Image Classification.html |
16.01Кб |
34. Convolutional Layers in PyTorch.html |
22.32Кб |
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.en.vtt |
3.87Кб |
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.mp4 |
5.37Мб |
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.pt-BR.vtt |
3.90Кб |
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.zh-CN.vtt |
3.28Кб |
35. Feature Vector.html |
10.65Кб |
36. Pre-Notebook CNN Classification.html |
12.31Кб |
37. Notebook CNNs for CIFAR Image Classification.html |
11.05Кб |
38. 23 Cifar Class V1-FF_EmZ2sf2w.en.vtt |
8.39Кб |
38. 23 Cifar Class V1-FF_EmZ2sf2w.mp4 |
12.83Мб |
38. 23 Cifar Class V1-FF_EmZ2sf2w.pt-BR.vtt |
8.62Кб |
38. 23 Cifar Class V1-FF_EmZ2sf2w.zh-CN.vtt |
7.07Кб |
38. CIFAR Classification Example.html |
11.57Кб |
39. 24 CNNs PyTorch V2-GNxzWfiz3do.en.vtt |
8.26Кб |
39. 24 CNNs PyTorch V2-GNxzWfiz3do.mp4 |
12.60Мб |
39. 24 CNNs PyTorch V2-GNxzWfiz3do.pt-BR.vtt |
8.11Кб |
39. 24 CNNs PyTorch V2-GNxzWfiz3do.zh-CN.vtt |
6.90Кб |
39. CNNs in PyTorch.html |
10.99Кб |
40. Image Augmentation.html |
10.62Кб |
40. Image Augmentation In Keras-zQnx2jZmjTA.en.vtt |
4.56Кб |
40. Image Augmentation In Keras-zQnx2jZmjTA.mp4 |
4.93Мб |
40. Image Augmentation In Keras-zQnx2jZmjTA.pt-BR.vtt |
4.53Кб |
40. Image Augmentation In Keras-zQnx2jZmjTA.zh-CN.vtt |
3.87Кб |
41. 26 Augmentation V1-J_gjHVt9pVw.en.vtt |
3.42Кб |
41. 26 Augmentation V1-J_gjHVt9pVw.mp4 |
7.62Мб |
41. 26 Augmentation V1-J_gjHVt9pVw.pt-BR.vtt |
3.26Кб |
41. 26 Augmentation V1-J_gjHVt9pVw.zh-CN.vtt |
2.89Кб |
41. Augmentation Using Transformations.html |
11.08Кб |
42. Groundbreaking CNN Architectures.html |
12.09Кб |
42. Groundbreaking CNN Architectures-GdYOqihgb2k.en.vtt |
3.59Кб |
42. Groundbreaking CNN Architectures-GdYOqihgb2k.mp4 |
7.32Мб |
42. Groundbreaking CNN Architectures-GdYOqihgb2k.pt-BR.vtt |
3.86Кб |
42. Groundbreaking CNN Architectures-GdYOqihgb2k.zh-CN.vtt |
3.17Кб |
43. Visualizando CNNs-mnqS_EhEZVg.en.vtt |
3.87Кб |
43. Visualizando CNNs-mnqS_EhEZVg.mp4 |
9.20Мб |
43. Visualizando CNNs-mnqS_EhEZVg.pt-BR.vtt |
3.83Кб |
43. Visualizando CNNs-mnqS_EhEZVg.zh-CN.vtt |
3.33Кб |
43. Visualizing CNNs (Part 1).html |
13.15Кб |
44. Visualizing CNNs (Part 2).html |
17.47Кб |
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.en.vtt |
2.03Кб |
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.mp4 |
3.66Мб |
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.pt-BR.vtt |
2.16Кб |
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.zh-CN.vtt |
1.72Кб |
45. Summary of CNNs.html |
10.66Кб |
46. Introduction to GPU Workspaces.html |
21.19Кб |
47. Workspace Playground.html |
10.71Кб |
48. GPU Workspace Playground.html |
10.86Кб |
assets.zip |
1.43Мб |
How you can help our Group!.txt |
208б |
img.zip |
7.35Мб |
img.zip |
2.22Мб |
img.zip |
330.99Кб |
img.zip |
12.68Мб |
img.zip |
1.26Мб |
img.zip |
366.17Кб |
img.zip |
661.96Кб |
img.zip |
1.91Мб |
img.zip |
65.80Кб |
img.zip |
2.55Мб |
img.zip |
2.34Мб |
img.zip |
24.28Кб |
img.zip |
2.30Мб |
img.zip |
3.39Мб |
img.zip |
122.80Кб |
img.zip |
4.51Мб |
img.zip |
83.81Кб |
img.zip |
560.72Кб |
img.zip |
12.05Мб |
img.zip |
678.53Кб |
img.zip |
2.74Мб |
img.zip |
3.26Мб |
img.zip |
803.69Кб |
img.zip |
1.66Мб |
img.zip |
2.10Мб |
img.zip |
4.53Мб |
img.zip |
11.02Мб |
img.zip |
499.72Кб |
index.html |
4.68Кб |
index.html |
4.15Кб |
index.html |
4.32Кб |
index.html |
6.06Кб |
index.html |
5.15Кб |
index.html |
6.70Кб |
index.html |
4.32Кб |
index.html |
6.36Кб |
index.html |
5.91Кб |
index.html |
5.24Кб |
index.html |
5.22Кб |
index.html |
5.11Кб |
index.html |
4.66Кб |
index.html |
6.78Кб |
index.html |
6.01Кб |
index.html |
4.47Кб |
index.html |
5.29Кб |
index.html |
5.43Кб |
index.html |
4.80Кб |
index.html |
5.91Кб |
index.html |
5.44Кб |
index.html |
5.10Кб |
index.html |
4.34Кб |
index.html |
4.32Кб |
index.html |
4.09Кб |
index.html |
4.84Кб |
index.html |
5.04Кб |
index.html |
5.22Кб |
index.html |
8.14Кб |
index.html |
4.29Кб |
index.html |
4.52Кб |
index.html |
4.71Кб |
index.html |
4.85Кб |
index.html |
5.45Кб |
index.html |
6.34Кб |
index.html |
4.85Кб |
index.html |
4.51Кб |
index.html |
4.39Кб |
index.html |
4.63Кб |
index.html |
4.46Кб |
index.html |
4.48Кб |
index.html |
4.43Кб |
index.html |
127.95Кб |
media.zip |
113.31Кб |
Project Description - Capstone Project.html |
10.34Кб |
Project Description - Capstone Proposal.html |
9.26Кб |
Project Description - Deploy a Sentiment Analysis Model.html |
8.02Кб |
Project Description - Improve Your LinkedIn Profile.html |
8.14Кб |
Project Description - Optimize Your GitHub Profile.html |
10.03Кб |
Project Description - Plagiarism Detector.html |
9.00Кб |
Project Rubric - Capstone Project.html |
10.29Кб |
Project Rubric - Capstone Proposal.html |
8.94Кб |
Project Rubric - Deploy a Sentiment Analysis Model.html |
11.64Кб |
Project Rubric - Improve Your LinkedIn Profile.html |
16.33Кб |
Project Rubric - Optimize Your GitHub Profile.html |
9.89Кб |
Project Rubric - Plagiarism Detector.html |
14.97Кб |