Общая информация
Название [FreeCoursesOnline.Me] UDACITY - Machine Learning Engineer Nanodegree v4.0.0
Тип
Размер 2.91Гб
Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
0. (1Hack.Us) Premium Tutorials-Guides-Articles _ Community based Forum.url 377б
01. 01 HS Intro Dan And Cezanne V2-2K8KFEUxNbw.en.vtt 1.66Кб
01. 01 HS Intro Dan And Cezanne V2-2K8KFEUxNbw.mp4 6.00Мб
01. 01 HS Intro Dan And Cezanne V2-2K8KFEUxNbw.zh-CN.vtt 1.46Кб
01. 04 How Does Amazon Decide Which Features To Work On-KYG_LWDhg4I.en.vtt 7.88Кб
01. 04 How Does Amazon Decide Which Features To Work On-KYG_LWDhg4I.mp4 60.52Мб
01. 04 How Does Amazon Decide Which Features To Work On-KYG_LWDhg4I.zh-CN.vtt 6.55Кб
01. 05 Can You Explain The Idea Behind The GitHub Respository-Hk9ChDtv_nQ.en.vtt 8.57Кб
01. 05 Can You Explain The Idea Behind The GitHub Respository-Hk9ChDtv_nQ.mp4 64.46Мб
01. 05 Can You Explain The Idea Behind The GitHub Respository-Hk9ChDtv_nQ.zh-CN.vtt 6.91Кб
01. 06 Does Sagemaker Work With Certain Products Or Use Cases-9HSJp_i9LFw.en.vtt 4.04Кб
01. 06 Does Sagemaker Work With Certain Products Or Use Cases-9HSJp_i9LFw.mp4 40.97Мб
01. 06 Does Sagemaker Work With Certain Products Or Use Cases-9HSJp_i9LFw.zh-CN.vtt 3.40Кб
01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.en.vtt 2.17Кб
01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.mp4 2.20Мб
01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.zh-CN.vtt 1.69Кб
01. 1 Weight Initialization V1-Ehc60si91Wg.en.vtt 9.23Кб
01. 1 Weight Initialization V1-Ehc60si91Wg.mp4 11.60Мб
01. 1 Weight Initialization V1-Ehc60si91Wg.pt-BR.vtt 8.92Кб
01. 1 Weight Initialization V1-Ehc60si91Wg.zh-CN.vtt 7.92Кб
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.ar.vtt 2.55Кб
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.en.vtt 2.00Кб
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.mp4 7.50Мб
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.pt-BR.vtt 1.77Кб
01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.zh-CN.vtt 1.83Кб
01. Apresentando Alexis-38ExGpdyvJI.en.vtt 694б
01. Apresentando Alexis-38ExGpdyvJI.mp4 2.23Мб
01. Apresentando Alexis-38ExGpdyvJI.pt-BR.vtt 599б
01. Apresentando Alexis-38ExGpdyvJI.zh-CN.vtt 615б
01. A Repository_s History - Intro-UBmg3syQS0E.ar.vtt 4.91Кб
01. A Repository_s History - Intro-UBmg3syQS0E.en.vtt 3.89Кб
01. A Repository_s History - Intro-UBmg3syQS0E.mp4 12.31Мб
01. A Repository_s History - Intro-UBmg3syQS0E.pt-BR.vtt 4.13Кб
01. A Repository_s History - Intro-UBmg3syQS0E.zh-CN.vtt 3.46Кб
01. Arvato Final Project-qBR6A0IQXEE.en.vtt 5.37Кб
01. Arvato Final Project-qBR6A0IQXEE.mp4 26.44Мб
01. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt 5.72Кб
01. Arvato Final Project-qBR6A0IQXEE.zh-CN.vtt 4.86Кб
01. Autoencoders.html 7.08Кб
01. Autoencoders 01 Autoencoders V2 RENDER V2-a5zHMWOq0fc.en.vtt 3.87Кб
01. Autoencoders 01 Autoencoders V2 RENDER V2-a5zHMWOq0fc.mp4 5.61Мб
01. Autoencoders 01 Autoencoders V2 RENDER V2-a5zHMWOq0fc.pt-BR.vtt 4.08Кб
01. AWS Overview.html 8.52Кб
01. Capstone project.html 5.16Кб
01. Capstone Proposal.html 5.18Кб
01. Congratulations!.html 6.05Кб
01. Creating New Repositories - Intro-KT163BkqIeg.ar.vtt 2.38Кб
01. Creating New Repositories - Intro-KT163BkqIeg.en.vtt 1.82Кб
01. Creating New Repositories - Intro-KT163BkqIeg.mp4 6.80Мб
01. Creating New Repositories - Intro-KT163BkqIeg.pt-BR.vtt 1.91Кб
01. Creating New Repositories - Intro-KT163BkqIeg.zh-CN.vtt 1.68Кб
01. Deploying a Model in SageMaker.html 9.05Кб
01. Deploying A Model With Sagemakerv2 RENDER V1 V2-nJCc4_9-iAQ.en.vtt 4.39Кб
01. Deploying A Model With Sagemakerv2 RENDER V1 V2-nJCc4_9-iAQ.mp4 15.43Мб
01. Deploying A Model With Sagemakerv2 RENDER V1 V2-nJCc4_9-iAQ.zh-CN.vtt 3.87Кб
01. Deploying a Sentiment Analysis Model-LWcJtUKVkzo.en.vtt 2.60Кб
01. Deploying a Sentiment Analysis Model-LWcJtUKVkzo.mp4 4.18Мб
01. Deploying a Sentiment Analysis Model-LWcJtUKVkzo.zh-CN.vtt 2.04Кб
01. Deployment Project.html 5.96Кб
01. FAQ.html 6.12Кб
01. Fraud Detection.html 7.69Кб
01. Get Opportunities with LinkedIn.html 11.21Кб
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.ar.vtt 4.78Кб
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.en.vtt 3.54Кб
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.mp4 12.74Мб
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.pt-BR.vtt 3.47Кб
01. Gitfinal L1 01 Welcome-lbR82UD5F0c.zh-CN.vtt 3.20Кб
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.ar.vtt 2.97Кб
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.en.vtt 2.22Кб
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.mp4 7.20Мб
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.pt-BR.vtt 2.28Кб
01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.zh-CN.vtt 1.91Кб
01. Hyperparameter Tuning.html 7.98Кб
01. Implementing RNNs.html 6.70Кб
01. Interview Segment Developing SageMaker.html 8.19Кб
01. Intro.html 5.96Кб
01. Intro.html 6.25Кб
01. Intro.html 6.04Кб
01. Intro.html 5.53Кб
01. Intro.html 5.37Кб
01. Introducing Alexis.html 10.79Кб
01. Introducing Cezanne _ Dan.html 9.16Кб
01. Introduction.html 8.56Кб
01. Introduction.html 7.12Кб
01. Introduction.html 11.80Кб
01. Introduction.html 13.77Кб
01. Introduction.html 9.72Кб
01. Introduction.html 14.30Кб
01. Introduction-5DfFaAl1Wmc.en.vtt 1.71Кб
01. Introduction-5DfFaAl1Wmc.mp4 8.22Мб
01. Introduction-5DfFaAl1Wmc.pt-BR.vtt 1.76Кб
01. Introduction-5DfFaAl1Wmc.zh-CN.vtt 1.56Кб
01. Introduction to Amazon SageMaker.html 8.37Кб
01. Introduction to GPU Workspaces.html 16.26Кб
01. Introduction To Software Engineering-7kphieW4yl4.en.vtt 3.15Кб
01. Introduction To Software Engineering-7kphieW4yl4.mp4 14.89Мб
01. Introduction To Software Engineering-7kphieW4yl4.pt-BR.vtt 3.50Кб
01. Introduction To Software Engineering-7kphieW4yl4.zh-CN.vtt 2.83Кб
01. L2 01 Fraud Detection V1 RENDER V2-zDnyR5Tci5M.en.vtt 2.73Кб
01. L2 01 Fraud Detection V1 RENDER V2-zDnyR5Tci5M.mp4 12.37Мб
01. L2 01 Fraud Detection V1 RENDER V2-zDnyR5Tci5M.zh-CN.vtt 2.31Кб
01. L2 01 Intro V1 V1-z7v7oa--W48.en.vtt 1.22Кб
01. L2 01 Intro V1 V1-z7v7oa--W48.mp4 6.57Мб
01. L2 01 Intro V1 V1-z7v7oa--W48.pt-BR.vtt 1.39Кб
01. L2 01 Intro V1 V1-z7v7oa--W48.zh-CN.vtt 1.10Кб
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.en.vtt 685б
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.mp4 3.87Мб
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.pt-BR.vtt 871б
01. L2 2 01 Intro V1 V2-QO2GYq8q92E.zh-CN.vtt 660б
01. L3 00 Intro V2-g_GYZpcVcFE.en.vtt 797б
01. L3 00 Intro V2-g_GYZpcVcFE.mp4 2.79Мб
01. L3 00 Intro V2-g_GYZpcVcFE.zh-CN.vtt 718б
01. L3 03 Time Series Forecasting-U8k2Fl2zgJ8.en.vtt 3.00Кб
01. L3 03 Time Series Forecasting-U8k2Fl2zgJ8.mp4 5.66Мб
01. L4 00 Intro V2-ohVX3RUTghg.en.vtt 988б
01. L4 00 Intro V2-ohVX3RUTghg.mp4 3.70Мб
01. L4 00 Intro V2-ohVX3RUTghg.zh-CN.vtt 830б
01. L4 Intro V2--PGMIIXFCgg.en.vtt 1.95Кб
01. L4 Intro V2--PGMIIXFCgg.mp4 8.56Мб
01. L4 Intro V2--PGMIIXFCgg.pt-BR.vtt 2.20Кб
01. L4 Intro V2--PGMIIXFCgg.zh-CN.vtt 1.80Кб
01. L5 00 Intro V2-7wI168JzBiU.en.vtt 1.19Кб
01. L5 00 Intro V2-7wI168JzBiU.mp4 3.13Мб
01. L5 00 Intro V2-7wI168JzBiU.zh-CN.vtt 984б
01. M4L31 HSA Implementing RNNs V2 RENDERv1 V2-BHoiwB61ays.en.vtt 2.05Кб
01. M4L31 HSA Implementing RNNs V2 RENDERv1 V2-BHoiwB61ays.mp4 5.68Мб
01. M4L31 HSA Implementing RNNs V2 RENDERv1 V2-BHoiwB61ays.pt-BR.vtt 2.17Кб
01. M4L31 HSA Implementing RNNs V2 RENDERv1 V2-BHoiwB61ays.zh-CN.vtt 1.75Кб
01. Natural Language Processing-UQBxJzoCp-I.en.vtt 1.17Кб
01. Natural Language Processing-UQBxJzoCp-I.mp4 4.63Мб
01. Natural Language Processing-UQBxJzoCp-I.pt-BR.vtt 1.30Кб
01. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt 1.04Кб
01. NLP and Pipelines.html 6.45Кб
01. Pre-Notebook Custom Models _ Moon Data.html 9.71Кб
01. Project Overview.html 8.24Кб
01. Project Overview.html 8.72Кб
01. Prove Your Skills With GitHub.html 11.15Кб
01. Sentiment RNN, Introduction.html 6.75Кб
01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.mp4 6.40Мб
01. Time-Series Forecasting.html 6.86Кб
01. Transfer Learning.html 6.16Кб
01. Transfer Learning-yfPEROi3SPU.en.vtt 2.54Кб
01. Transfer Learning-yfPEROi3SPU.mp4 5.70Мб
01. Transfer Learning-yfPEROi3SPU.pt-BR.vtt 2.41Кб
01. Transfer Learning-yfPEROi3SPU.zh-CN.vtt 2.27Кб
01. Updating a Model.html 7.94Кб
01. Weight Initialization.html 6.38Кб
01. Welcome!.html 8.11Кб
01. Welcome.html 6.28Кб
01. Welcome To Deployment-jQ2IZzga8Nw.en.vtt 1.96Кб
01. Welcome To Deployment-jQ2IZzga8Nw.mp4 6.52Мб
01. Welcome To Deployment-jQ2IZzga8Nw.zh-CN.vtt 1.74Кб
01. Welcome to the Machine Learning Engineer Program _ Projects.html 9.54Кб
01. What is Version Control.html 9.59Кб
01. Why Network-exjEm9Paszk.ar.vtt 5.14Кб
01. Why Network-exjEm9Paszk.en.vtt 3.40Кб
01. Why Network-exjEm9Paszk.es-MX.vtt 3.20Кб
01. Why Network-exjEm9Paszk.ja-JP.vtt 4.33Кб
01. Why Network-exjEm9Paszk.mp4 17.37Мб
01. Why Network-exjEm9Paszk.pt-BR.vtt 3.20Кб
01. Why Network-exjEm9Paszk.zh-CN.vtt 3.29Кб
02. 01 Time Series Notebook V2-OZJu6or8Fl0.en.vtt 5.49Кб
02. 01 Time Series Notebook V2-OZJu6or8Fl0.mp4 9.75Мб
02. 01 What Is Amazon Sagemaker-JWRtWcd92E4.en.vtt 4.14Кб
02. 01 What Is Amazon Sagemaker-JWRtWcd92E4.mp4 17.48Мб
02. 01 What Is Amazon Sagemaker-JWRtWcd92E4.zh-CN.vtt 3.46Кб
02. 02 Time Series Prediction V2-xV5jHLFfJbQ.en.vtt 10.86Кб
02. 02 Time Series Prediction V2-xV5jHLFfJbQ.mp4 14.80Мб
02. 02 Time Series Prediction V2-xV5jHLFfJbQ.pt-BR.vtt 10.48Кб
02. 02 Time Series Prediction V2-xV5jHLFfJbQ.zh-CN.vtt 8.72Кб
02. 02 What Applications Are Enabled By Amazon-iXN30g70PJ0.en.vtt 2.95Кб
02. 02 What Applications Are Enabled By Amazon-iXN30g70PJ0.mp4 13.55Мб
02. 02 What Applications Are Enabled By Amazon-iXN30g70PJ0.zh-CN.vtt 2.21Кб
02. 03 Why Should Students Gain Skills In Sagemaker And Cloud Services-Hp6qTdiqU3g.en.vtt 6.29Кб
02. 03 Why Should Students Gain Skills In Sagemaker And Cloud Services-Hp6qTdiqU3g.mp4 41.22Мб
02. 03 Why Should Students Gain Skills In Sagemaker And Cloud Services-Hp6qTdiqU3g.zh-CN.vtt 4.97Кб
02. 07 How Do You Label Data At Scale-G_E5N6k2knA.en.vtt 3.92Кб
02. 07 How Do You Label Data At Scale-G_E5N6k2knA.mp4 35.77Мб
02. 07 How Do You Label Data At Scale-G_E5N6k2knA.zh-CN.vtt 3.09Кб
02. 08 What_S Your Prediction Of What Sagemaker Will Prioritize In The Next 1-2 Years-git73JsQC1Y.en.vtt 8.98Кб
02. 08 What_S Your Prediction Of What Sagemaker Will Prioritize In The Next 1-2 Years-git73JsQC1Y.mp4 71.01Мб
02. 08 What_S Your Prediction Of What Sagemaker Will Prioritize In The Next 1-2 Years-git73JsQC1Y.zh-CN.vtt 7.27Кб
02. 18 Moon Data Custom Model V1-vb5ojq8Jw7k.en.vtt 7.45Кб
02. 18 Moon Data Custom Model V1-vb5ojq8Jw7k.mp4 14.97Мб
02. 18 Moon Data Custom Model V1-vb5ojq8Jw7k.zh-CN.vtt 6.19Кб
02. 2 Constant Weights V1-zR4fECgeZ7Y.en.vtt 8.99Кб
02. 2 Constant Weights V1-zR4fECgeZ7Y.mp4 9.88Мб
02. 2 Constant Weights V1-zR4fECgeZ7Y.pt-BR.vtt 8.30Кб
02. 2 Constant Weights V1-zR4fECgeZ7Y.zh-CN.vtt 7.49Кб
02. 2 Simple Autoencoder V2-KbmfyDNxL5U.en.vtt 7.78Кб
02. 2 Simple Autoencoder V2-KbmfyDNxL5U.mp4 9.42Мб
02. 2 Simple Autoencoder V2-KbmfyDNxL5U.pt-BR.vtt 6.98Кб
02. A Linear Autoencoder.html 7.04Кб
02. Aplicações de CNNs-HrYNL_1SV2Y.en.vtt 5.37Кб
02. Aplicações de CNNs-HrYNL_1SV2Y.mp4 23.75Мб
02. Aplicações de CNNs-HrYNL_1SV2Y.pt-BR.vtt 5.66Кб
02. Aplicações de CNNs-HrYNL_1SV2Y.zh-CN.vtt 4.70Кб
02. Applications of CNNs.html 16.69Кб
02. AWS Setup Instructions for Regular account.html 9.02Кб
02. AWS Setup Instructions for Regular account.html 7.41Кб
02. Boston Housing Example - Deploying the Model.html 8.45Кб
02. Building a Sentiment Analysis Model (XGBoost).html 7.48Кб
02. Clean and Modular Code.html 11.50Кб
02. Constant Weights.html 7.04Кб
02. Containment.html 7.24Кб
02. Course Overview.html 7.55Кб
02. Create A Repo From Scratch.html 15.70Кб
02. Deployment L3 C1 V1-0PBsV-SzSlo.en.vtt 5.22Кб
02. Deployment L3 C1 V1-0PBsV-SzSlo.mp4 11.84Мб
02. Deployment L3 C1 V1-0PBsV-SzSlo.zh-CN.vtt 4.39Кб
02. Deployment L4 C1 V1-nah8kxqp55U.en.vtt 5.87Кб
02. Deployment L4 C1 V1-nah8kxqp55U.mp4 10.74Мб
02. Deployment L4 C1 V1-nah8kxqp55U.zh-CN.vtt 4.73Кб
02. Deployment L5 C1 V1-dwRkA0ig3uU.en.vtt 6.36Кб
02. Deployment L5 C1 V1-dwRkA0ig3uU.mp4 10.60Мб
02. Deployment L5 C1 V1-dwRkA0ig3uU.zh-CN.vtt 5.16Кб
02. Displaying A Repository_s Commits.html 19.46Кб
02. Forecasting Energy Consumption, Notebook.html 6.90Кб
02. Git Add.html 21.46Кб
02. How NLP Pipelines Work.html 6.45Кб
02. Interview Segment New Features.html 6.93Кб
02. Interview Segment What is SageMaker and Why Learn It.html 11.26Кб
02. Introduction.html 8.06Кб
02. Introduction to Hyperparameter Tuning.html 7.71Кб
02. Introduction-Vnj2VNQROtI.ar.vtt 2.28Кб
02. Introduction-Vnj2VNQROtI.en.vtt 1.58Кб
02. Introduction-Vnj2VNQROtI.ja-JP.vtt 1.97Кб
02. Introduction-Vnj2VNQROtI.mp4 5.46Мб
02. Introduction-Vnj2VNQROtI.pt-BR.vtt 1.79Кб
02. Introduction-Vnj2VNQROtI.zh-CN.vtt 1.62Кб
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.en.vtt 1.25Кб
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.mp4 3.72Мб
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.pt-BR.vtt 1.48Кб
02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.zh-CN.vtt 1.08Кб
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.en.vtt 5.12Кб
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.mp4 17.88Мб
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.pt-BR.vtt 5.48Кб
02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.zh-CN.vtt 4.46Кб
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.en.vtt 1.38Кб
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.mp4 6.49Мб
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.pt-BR.vtt 1.69Кб
02. L2 2 02 Testing V1 V1-IkLUUHt_jis.zh-CN.vtt 1.19Кб
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.en.vtt 2.34Кб
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.mp4 8.56Мб
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.pt-BR.vtt 2.48Кб
02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.zh-CN.vtt 1.94Кб
02. L4 03 Containment V1 V4-FwmT_7fICn0.en.vtt 4.12Кб
02. L4 03 Containment V1 V4-FwmT_7fICn0.mp4 6.37Мб
02. L4 03 Containment V1 V4-FwmT_7fICn0.zh-CN.vtt 3.45Кб
02. L4 Lesson Overview V2-9WQF-CCNdJ8.en.vtt 1.47Кб
02. L4 Lesson Overview V2-9WQF-CCNdJ8.mp4 6.41Мб
02. L4 Lesson Overview V2-9WQF-CCNdJ8.pt-BR.vtt 1.59Кб
02. L4 Lesson Overview V2-9WQF-CCNdJ8.zh-CN.vtt 1.30Кб
02. Lesson Overview.html 10.27Кб
02. Meet Chris-0ccflD9x5WU.ar.vtt 6.32Кб
02. Meet Chris-0ccflD9x5WU.en.vtt 4.89Кб
02. Meet Chris-0ccflD9x5WU.es-MX.vtt 4.52Кб
02. Meet Chris-0ccflD9x5WU.ja-JP.vtt 5.61Кб
02. Meet Chris-0ccflD9x5WU.mp4 32.54Мб
02. Meet Chris-0ccflD9x5WU.pt-BR.vtt 4.47Кб
02. Meet Chris-0ccflD9x5WU.zh-CN.vtt 4.41Кб
02. Modifying The Last Commit.html 7.51Кб
02. Moon Data _ Custom Models.html 6.81Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.ar.vtt 2.17Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.en.vtt 1.63Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.mp4 4.45Мб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.pt-BR.vtt 1.78Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.zh-CN.vtt 1.45Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.ar.vtt 2.36Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.en.vtt 1.70Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.mp4 2.22Мб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.pt-BR.vtt 1.77Кб
02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.zh-CN.vtt 1.51Кб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt 1.74Кб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4 1.90Мб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.pt-BR.vtt 1.88Кб
02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt 1.54Кб
02. Pre-Notebook Payment Fraud Detection.html 9.69Кб
02. Pre-Notebook Sentiment RNN.html 8.95Кб
02. Procedural vs. Object-Oriented Programming.html 13.66Кб
02. Program Structure.html 9.30Кб
02. Setting up a Notebook Instance.html 9.42Кб
02. Software _ Data Requirements.html 8.72Кб
02. Support.html 5.62Кб
02. Tagging.html 18.29Кб
02. Testing.html 7.13Кб
02. Time-Series Prediction.html 7.45Кб
02. Troubleshooting Possible Errors.html 7.02Кб
02. Useful Layers.html 6.13Кб
02. Useful Layers-kn4BN7z3UGQ.en.vtt 4.01Кб
02. Useful Layers-kn4BN7z3UGQ.mp4 6.83Мб
02. Useful Layers-kn4BN7z3UGQ.pt-BR.vtt 3.91Кб
02. Useful Layers-kn4BN7z3UGQ.zh-CN.vtt 3.43Кб
02. Use Your Story to Stand Out.html 8.75Кб
02. Version Control In Daily Use.html 10.95Кб
02. What_s Ahead.html 9.58Кб
02. Workspace Playground.html 5.78Кб
02. Workspace Portfolio Exercise.html 6.71Кб
03. 01 Transaction Data V1-bF65I3J6aqQ.en.vtt 5.50Кб
03. 01 Transaction Data V1-bF65I3J6aqQ.mp4 15.11Мб
03. 01 Transaction Data V1-bF65I3J6aqQ.zh-CN.vtt 4.72Кб
03. 03 Fine Tuning V1 RENDER V2-XOyb315xYbw.en.vtt 3.22Кб
03. 03 Fine Tuning V1 RENDER V2-XOyb315xYbw.mp4 5.78Мб
03. 03 Fine Tuning V1 RENDER V2-XOyb315xYbw.pt-BR.vtt 3.20Кб
03. 03 Fine Tuning V1 RENDER V2-XOyb315xYbw.zh-CN.vtt 2.79Кб
03. 03 Training Memory V1-sx7T_KP5v9I.en.vtt 7.85Кб
03. 03 Training Memory V1-sx7T_KP5v9I.mp4 9.57Мб
03. 03 Training Memory V1-sx7T_KP5v9I.pt-BR.vtt 7.42Кб
03. 03 Training Memory V1-sx7T_KP5v9I.zh-CN.vtt 6.40Кб
03. 09 Do You Have Advice For Someone Who Wants To Learn More-Wgq4eukacqE.en.vtt 4.45Кб
03. 09 Do You Have Advice For Someone Who Wants To Learn More-Wgq4eukacqE.mp4 44.80Мб
03. 09 Do You Have Advice For Someone Who Wants To Learn More-Wgq4eukacqE.zh-CN.vtt 3.44Кб
03. 19 Uploading To S3 V1-Mz08Bac6h2Y.en.vtt 3.13Кб
03. 19 Uploading To S3 V1-Mz08Bac6h2Y.mp4 6.99Мб
03. 19 Uploading To S3 V1-Mz08Bac6h2Y.zh-CN.vtt 2.63Кб
03. 4 Random Uniform V1-FacdIomrLIw.en.vtt 6.30Кб
03. 4 Random Uniform V1-FacdIomrLIw.mp4 8.10Мб
03. 4 Random Uniform V1-FacdIomrLIw.pt-BR.vtt 6.23Кб
03. 4 Random Uniform V1-FacdIomrLIw.zh-CN.vtt 5.34Кб
03. AWS SageMaker.html 15.59Кб
03. Boston Housing Example - Tuning the Model.html 8.72Кб
03. Boston Housing In-Depth - Deploying the Model.html 8.28Кб
03. Branching.html 19.17Кб
03. Building a Sentiment Analysis Model (Linear Learner).html 7.76Кб
03. Changing How Git Log Displays Information.html 13.93Кб
03. Class, Object, Method and Attribute.html 13.21Кб
03. Clone An Existing Repo.html 17.32Кб
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.en.vtt 1.26Кб
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.mp4 4.68Мб
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.pt-BR.vtt 1.30Кб
03. ConNet 01 LessonOutline V1 V1-77LzWE1qQrc.zh-CN.vtt 1.07Кб
03. Course Outline, Case Studies.html 12.45Кб
03. Deployment L3 C2 V1-1lzWAzypJ9k.en.vtt 9.22Кб
03. Deployment L3 C2 V1-1lzWAzypJ9k.mp4 16.24Мб
03. Deployment L3 C2 V1-1lzWAzypJ9k.zh-CN.vtt 7.60Кб
03. Deployment L4 C2 V1-lsYRtKivrGc.en.vtt 5.31Кб
03. Deployment L4 C2 V1-lsYRtKivrGc.mp4 10.26Мб
03. Deployment L4 C2 V1-lsYRtKivrGc.zh-CN.vtt 4.32Кб
03. Deployment L5 C2 V1-7TdiVF6qS1k.en.vtt 5.23Кб
03. Deployment L5 C2 V1-7TdiVF6qS1k.mp4 7.16Мб
03. Deployment L5 C2 V1-7TdiVF6qS1k.zh-CN.vtt 4.22Кб
03. Elevator Pitch-S-nAHPrkQrQ.ar.vtt 5.13Кб
03. Elevator Pitch-S-nAHPrkQrQ.en.vtt 3.53Кб
03. Elevator Pitch-S-nAHPrkQrQ.es-MX.vtt 3.56Кб
03. Elevator Pitch-S-nAHPrkQrQ.ja-JP.vtt 4.35Кб
03. Elevator Pitch-S-nAHPrkQrQ.mp4 20.63Мб
03. Elevator Pitch-S-nAHPrkQrQ.pt-BR.vtt 3.47Кб
03. Elevator Pitch-S-nAHPrkQrQ.zh-CN.vtt 3.40Кб
03. Exercise Payment Transaction Data.html 7.70Кб
03. Extracurricular Topics.html 6.96Кб
03. Fine-Tuning.html 17.89Кб
03. Get Access to GPU Instances.html 17.24Кб
03. Git and Version Control Terminology.html 14.67Кб
03. Git Commit.html 22.29Кб
03. Gitfinal L1 13 Git_S Terminology-bf26adzeqMM.ar.vtt 3.63Кб
03. Gitfinal L1 13 Git_S Terminology-bf26adzeqMM.en.vtt 2.65Кб
03. Gitfinal L1 13 Git_S Terminology-bf26adzeqMM.mp4 10.33Мб
03. Gitfinal L1 13 Git_S Terminology-bf26adzeqMM.pt-BR.vtt 2.79Кб
03. Gitfinal L1 13 Git_S Terminology-bf26adzeqMM.zh-CN.vtt 2.42Кб
03. GitHub profile important items.html 8.22Кб
03. GitHub profile important items-prvPVTjVkwQ.ar.vtt 3.93Кб
03. GitHub profile important items-prvPVTjVkwQ.en.vtt 2.93Кб
03. GitHub profile important items-prvPVTjVkwQ.ja-JP.vtt 3.28Кб
03. GitHub profile important items-prvPVTjVkwQ.mp4 4.91Мб
03. GitHub profile important items-prvPVTjVkwQ.pt-BR.vtt 3.14Кб
03. GitHub profile important items-prvPVTjVkwQ.zh-CN.vtt 2.65Кб
03. GPU Workspace Playground.html 5.93Кб
03. Interview Segment Further Learning.html 5.93Кб
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.en.vtt 1.89Кб
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.mp4 7.67Мб
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.pt-BR.vtt 1.94Кб
03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.zh-CN.vtt 1.75Кб
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.en.vtt 2.44Кб
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.mp4 12.31Мб
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.pt-BR.vtt 2.74Кб
03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.zh-CN.vtt 2.09Кб
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.en.vtt 2.17Кб
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.mp4 7.70Мб
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.pt-BR.vtt 2.68Кб
03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.zh-CN.vtt 1.87Кб
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.en.vtt 3.21Кб
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.mp4 6.49Мб
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.pt-BR.vtt 3.22Кб
03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.zh-CN.vtt 2.77Кб
03. Lesson Outline.html 11.97Кб
03. Machine Learning Workflow - Part 1 Introduction--ZtVV7RvGYY.en.vtt 1.64Кб
03. Machine Learning Workflow - Part 1 Introduction--ZtVV7RvGYY.mp4 4.44Мб
03. Machine Learning Workflow - Part 1 Introduction--ZtVV7RvGYY.zh-CN.vtt 1.38Кб
03. Meet Andrew.html 5.78Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.ar.vtt 4.70Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.en.vtt 3.55Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.mp4 2.60Мб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.pt-BR.vtt 3.41Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.zh-CN.vtt 3.31Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.ar.vtt 1.57Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.en.vtt 1.16Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.mp4 1.88Мб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.pt-BR.vtt 1.17Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.zh-CN.vtt 1.06Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.ar.vtt 2.19Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.en.vtt 1.52Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.mp4 5.03Мб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.pt-BR.vtt 1.57Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.zh-CN.vtt 1.35Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.ar.vtt 1.46Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.en.vtt 1.14Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.mp4 1.85Мб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.pt-BR.vtt 1.22Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.zh-CN.vtt 1.03Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.ar.vtt 2.15Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.en.vtt 1.60Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.mp4 4.23Мб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.pt-BR.vtt 1.67Кб
03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.zh-CN.vtt 1.49Кб
03. Notebook Calculate Containment.html 6.76Кб
03. Notebook Sentiment RNN.html 7.23Кб
03. Possible Projects.html 9.54Кб
03. Pre-Notebook Linear Autoencoder.html 8.20Кб
03. Pre-Notebook Time-Series Forecasting.html 9.21Кб
03. Problem Introduction.html 8.25Кб
03. Random Uniform.html 6.32Кб
03. Refactoring Code.html 8.84Кб
03. Reverting A Commit.html 9.13Кб
03. SageMaker Instance Utilization Limits.html 14.83Кб
03. Testing and Data Science.html 8.37Кб
03. Text Processing.html 6.65Кб
03. Text Processing-pqheVyctkNQ.en.vtt 2.63Кб
03. Text Processing-pqheVyctkNQ.mp4 5.24Мб
03. Text Processing-pqheVyctkNQ.pt-BR.vtt 2.96Кб
03. Text Processing-pqheVyctkNQ.zh-CN.vtt 2.31Кб
03. The Web.html 8.51Кб
03. The World Wide Web-Rxn-zCyg_iA.en.vtt 1.40Кб
03. The World Wide Web-Rxn-zCyg_iA.mp4 4.16Мб
03. The World Wide Web-Rxn-zCyg_iA.pt-BR.vtt 1.42Кб
03. The World Wide Web-Rxn-zCyg_iA.zh-CN.vtt 1.42Кб
03. Training _ Memory.html 8.61Кб
03. Troubleshooting Possible Errors.html 6.79Кб
03. Upload Data to S3.html 6.77Кб
03. Why Use an Elevator Pitch.html 7.37Кб
03. Workspace.html 5.87Кб
04. 01 Writing Clean Code V1-wNaiahWCwkQ.en.vtt 6.71Кб
04. 01 Writing Clean Code V1-wNaiahWCwkQ.mp4 15.42Мб
04. 01 Writing Clean Code V1-wNaiahWCwkQ.pt-BR.vtt 7.48Кб
04. 01 Writing Clean Code V1-wNaiahWCwkQ.zh-CN.vtt 6.26Кб
04. 02 Data Splitting Dist Solution V1-Cjn82LqTB00.en.vtt 5.41Кб
04. 02 Data Splitting Dist Solution V1-Cjn82LqTB00.mp4 12.40Мб
04. 02 Data Splitting Dist Solution V1-Cjn82LqTB00.zh-CN.vtt 4.55Кб
04. 02 Processing Energy Data V2-zxnoYK4sYgk.en.vtt 6.06Кб
04. 02 Processing Energy Data V2-zxnoYK4sYgk.mp4 14.69Мб
04. 06 Unit Tests V1-wb9jggHEvgI.en.vtt 3.91Кб
04. 06 Unit Tests V1-wb9jggHEvgI.mp4 4.49Мб
04. 06 Unit Tests V1-wb9jggHEvgI.pt-BR.vtt 4.04Кб
04. 06 Unit Tests V1-wb9jggHEvgI.zh-CN.vtt 3.52Кб
04. 20 Custom PyTorch Model V1-kiZ22MJWSFU.en.vtt 3.24Кб
04. 20 Custom PyTorch Model V1-kiZ22MJWSFU.mp4 6.64Мб
04. 20 Custom PyTorch Model V1-kiZ22MJWSFU.zh-CN.vtt 2.84Кб
04. 3 Data PreProcessing V1-Xw1MWmql7no.en.vtt 6.93Кб
04. 3 Data PreProcessing V1-Xw1MWmql7no.mp4 10.09Мб
04. 3 Data PreProcessing V1-Xw1MWmql7no.zh-CN.vtt 5.68Кб
04. 5 General Rule V1-YKe9iOUMmsI.en.vtt 5.68Кб
04. 5 General Rule V1-YKe9iOUMmsI.mp4 8.00Мб
04. 5 General Rule V1-YKe9iOUMmsI.pt-BR.vtt 5.50Кб
04. 5 General Rule V1-YKe9iOUMmsI.zh-CN.vtt 4.72Кб
04. Arvato Final Project-qBR6A0IQXEE.en.vtt 5.37Кб
04. Arvato Final Project-qBR6A0IQXEE.mp4 26.44Мб
04. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt 5.72Кб
04. Arvato Final Project-qBR6A0IQXEE.zh-CN.vtt 4.86Кб
04. BertelsmannArvato Project Overview.html 8.82Кб
04. Branching Effectively.html 27.93Кб
04. Character-Wise RNN-dXl3eWCGLdU.en.vtt 3.33Кб
04. Character-Wise RNN-dXl3eWCGLdU.mp4 2.88Мб
04. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt 3.66Кб
04. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt 3.04Кб
04. Character-wise RNNs.html 6.59Кб
04. Combining the Models.html 7.53Кб
04. Commit Messages.html 12.05Кб
04. Components of a Web App.html 12.20Кб
04. Congratulations.html 6.61Кб
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.en.vtt 2.82Кб
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.mp4 3.64Мб
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.pt-BR.vtt 2.64Кб
04. ConNet 021 MNISTClassification V1 V2-a7bvIGZpcnk.zh-CN.vtt 2.40Кб
04. Create Your Elevator Pitch.html 8.52Кб
04. Data Pre-Processing.html 6.72Кб
04. Deploying and Using a Sentiment Analysis Model.html 8.66Кб
04. Deployment L3 C3 V1-r7XVQEojRKk.en.vtt 2.30Кб
04. Deployment L3 C3 V1-r7XVQEojRKk.mp4 3.55Мб
04. Deployment L3 C3 V1-r7XVQEojRKk.zh-CN.vtt 1.93Кб
04. Deployment L4 C3 V1-7XORMSX7vAY.en.vtt 1.44Кб
04. Deployment L4 C3 V1-7XORMSX7vAY.mp4 3.26Мб
04. Deployment L4 C3 V1-7XORMSX7vAY.zh-CN.vtt 1.26Кб
04. Deployment L5 C3 V1-OYYJerDHu0o.en.vtt 7.58Кб
04. Deployment L5 C3 V1-OYYJerDHu0o.mp4 13.64Мб
04. Deployment L5 C3 V1-OYYJerDHu0o.zh-CN.vtt 6.21Кб
04. Determine A Repo_s Status.html 16.79Кб
04. Elevator Pitch-0QtgTG49E9I.ar.vtt 2.28Кб
04. Elevator Pitch-0QtgTG49E9I.en.vtt 2.06Кб
04. Elevator Pitch-0QtgTG49E9I.es-MX.vtt 1.99Кб
04. Elevator Pitch-0QtgTG49E9I.ja-JP.vtt 2.45Кб
04. Elevator Pitch-0QtgTG49E9I.mp4 9.98Мб
04. Elevator Pitch-0QtgTG49E9I.pt-BR.vtt 1.94Кб
04. Elevator Pitch-0QtgTG49E9I.zh-CN.vtt 1.99Кб
04. Exercise Custom PyTorch Classifier.html 6.84Кб
04. Feature Extraction.html 6.27Кб
04. Feature Extraction-Bd6TJB8eVLQ.en.vtt 1.10Кб
04. Feature Extraction-Bd6TJB8eVLQ.mp4 4.15Мб
04. Feature Extraction-Bd6TJB8eVLQ.zh-CN.vtt 970б
04. General Rule.html 6.31Кб
04. Good GitHub repository.html 7.88Кб
04. Good GitHub repository-qBi8Q1EJdfQ.ar.vtt 2.56Кб
04. Good GitHub repository-qBi8Q1EJdfQ.en.vtt 1.92Кб
04. Good GitHub repository-qBi8Q1EJdfQ.ja-JP.vtt 2.21Кб
04. Good GitHub repository-qBi8Q1EJdfQ.mp4 4.23Мб
04. Good GitHub repository-qBi8Q1EJdfQ.pt-BR.vtt 2.07Кб
04. Good GitHub repository-qBi8Q1EJdfQ.zh-CN.vtt 1.92Кб
04. L1 031 Unsupervised Vs Supervised Learning V1 RENDER V2-9M6T9Bx3oNA.en.vtt 3.74Кб
04. L1 031 Unsupervised Vs Supervised Learning V1 RENDER V2-9M6T9Bx3oNA.mp4 8.01Мб
04. L1 031 Unsupervised Vs Supervised Learning V1 RENDER V2-9M6T9Bx3oNA.zh-CN.vtt 3.08Кб
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.en.vtt 4.19Кб
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.mp4 19.12Мб
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.pt-BR.vtt 4.57Кб
04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.zh-CN.vtt 3.93Кб
04. L4 04 Longest Common Subsequence V1 V1-yxXXwBKeYvU.en.vtt 2.63Кб
04. L4 04 Longest Common Subsequence V1 V1-yxXXwBKeYvU.mp4 4.55Мб
04. L4 04 Longest Common Subsequence V1 V1-yxXXwBKeYvU.zh-CN.vtt 2.29Кб
04. L4 Components Of A Web App V4-2aJf5sO2ox4.en.vtt 2.45Кб
04. L4 Components Of A Web App V4-2aJf5sO2ox4.mp4 7.83Мб
04. L4 Components Of A Web App V4-2aJf5sO2ox4.pt-BR.vtt 2.65Кб
04. L4 Components Of A Web App V4-2aJf5sO2ox4.zh-CN.vtt 2.19Кб
04. L5 Outro-rW1YP1aSb08.en.vtt 2.39Кб
04. L5 Outro-rW1YP1aSb08.mp4 9.60Мб
04. L5 Outro-rW1YP1aSb08.pt-BR.vtt 2.48Кб
04. Longest Common Subsequence.html 6.29Кб
04. Machine Learning Workflow.html 9.57Кб
04. Machine Learning Workflow - Part 2 Details-ku_96X6TZas.en.vtt 4.92Кб
04. Machine Learning Workflow - Part 2 Details-ku_96X6TZas.mp4 13.73Мб
04. Machine Learning Workflow - Part 2 Details-ku_96X6TZas.zh-CN.vtt 4.15Кб
04. MacLinux Setup.html 11.82Кб
04. Meet Juno.html 5.65Кб
04. Mini-Project Tuning the Sentiment Analysis Model.html 7.62Кб
04. MNIST Dataset.html 11.22Кб
04. More Resources.html 7.61Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.ar.vtt 2.59Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.en.vtt 1.97Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.mp4 3.63Мб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.pt-BR.vtt 2.08Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.zh-CN.vtt 1.87Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.ar.vtt 1.27Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.en.vtt 1023б
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.mp4 1.61Мб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.pt-BR.vtt 1.07Кб
04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.zh-CN.vtt 948б
04. Notebook Linear Autoencoder.html 7.57Кб
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.en.vtt 7.90Кб
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.mp4 8.26Мб
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.pt-BR.vtt 7.47Кб
04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.zh-CN.vtt 7.06Кб
04. OOP Syntax.html 10.88Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.ar.vtt 2.19Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.en.vtt 1.94Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.es-MX.vtt 1.43Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.ja-JP.vtt 2.36Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4 8.93Мб
04. Pitching to a Recruiter-LxAdWaA-qTQ.pt-BR.vtt 1.40Кб
04. Pitching to a Recruiter-LxAdWaA-qTQ.zh-CN.vtt 1.74Кб
04. Processing Energy Data.html 6.84Кб
04. Resetting Commits.html 23.13Кб
04. SageMaker Instance Utilization Limits.html 16.52Кб
04. Skills that Set You Apart.html 7.27Кб
04. Solution Data Distribution _ Splitting.html 7.76Кб
04. Unit Tests.html 8.17Кб
04. Unsupervised v Supervised Learning.html 8.79Кб
04. VGG Classifier-fOiQFXItYe4.en.vtt 6.80Кб
04. VGG Classifier-fOiQFXItYe4.mp4 10.89Мб
04. VGG Classifier-fOiQFXItYe4.pt-BR.vtt 6.72Кб
04. VGG Classifier-fOiQFXItYe4.zh-CN.vtt 5.87Кб
04. VGG Model _ Classifier.html 6.19Кб
04. Viewing Modified Files.html 14.02Кб
04. Writing Clean Code.html 10.75Кб
05. 03 Creating Time Series V2-KMzVAmoa66k.en.vtt 5.29Кб
05. 03 Creating Time Series V2-KMzVAmoa66k.mp4 10.52Мб
05. 03 LinearLearner V1-pjs5pP9OOMc.en.vtt 3.35Кб
05. 03 LinearLearner V1-pjs5pP9OOMc.mp4 5.73Мб
05. 03 LinearLearner V1-pjs5pP9OOMc.zh-CN.vtt 2.91Кб
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.en.vtt 1.86Кб
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.mp4 2.77Мб
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.pt-BR.vtt 2.11Кб
05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.zh-CN.vtt 1.69Кб
05. 22 Simple NN V1-FINTJpz1Yx0.en.vtt 2.78Кб
05. 22 Simple NN V1-FINTJpz1Yx0.mp4 4.98Мб
05. 22 Simple NN V1-FINTJpz1Yx0.zh-CN.vtt 2.34Кб
05. 3 Defining Training Autoenc V1-OWrlQUSGqyo.en.vtt 4.38Кб
05. 3 Defining Training Autoenc V1-OWrlQUSGqyo.mp4 5.95Мб
05. 3 Defining Training Autoenc V1-OWrlQUSGqyo.pt-BR.vtt 4.12Кб
05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.en.vtt 4.78Кб
05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.mp4 6.45Мб
05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.zh-CN.vtt 4.12Кб
05. 6 Normal Distribution V1-xm43q4qD2tI.en.vtt 3.54Кб
05. 6 Normal Distribution V1-xm43q4qD2tI.mp4 4.07Мб
05. 6 Normal Distribution V1-xm43q4qD2tI.pt-BR.vtt 3.50Кб
05. 6 Normal Distribution V1-xm43q4qD2tI.zh-CN.vtt 2.90Кб
05. APIs [advanced version].html 10.39Кб
05. Arvato Terms and Conditions.html 8.84Кб
05. Bag of Words.html 6.34Кб
05. Bag Of Words-A7M1z8yLl0w.en.vtt 4.72Кб
05. Bag Of Words-A7M1z8yLl0w.en.vtt 4.72Кб
05. Bag Of Words-A7M1z8yLl0w.mp4 6.57Мб
05. Bag Of Words-A7M1z8yLl0w.mp4 6.57Мб
05. Bag Of Words-A7M1z8yLl0w.pt-BR.vtt 5.04Кб
05. Bag Of Words-A7M1z8yLl0w.pt-BR.vtt 5.04Кб
05. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt 4.12Кб
05. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt 4.12Кб
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.en.vtt 3.84Кб
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.mp4 9.15Мб
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.pt-BR.vtt 4.07Кб
05. ConNet 022 How Computers Interpret Images V1-mEPfoM68Fx4.zh-CN.vtt 3.27Кб
05. Create A Repo - Outro-h7j4STDFCjs.ar.vtt 959б
05. Create A Repo - Outro-h7j4STDFCjs.en.vtt 720б
05. Create A Repo - Outro-h7j4STDFCjs.mp4 2.73Мб
05. Create A Repo - Outro-h7j4STDFCjs.pt-BR.vtt 800б
05. Create A Repo - Outro-h7j4STDFCjs.zh-CN.vtt 664б
05. Defining _ Training an Autoencoder.html 7.10Кб
05. Deployment L2 C2 V2-TRUCNy5Eqjc.en.vtt 3.60Кб
05. Deployment L2 C2 V2-TRUCNy5Eqjc.mp4 7.89Мб
05. Deployment L2 C2 V2-TRUCNy5Eqjc.zh-CN.vtt 3.01Кб
05. Deployment L4 C4 V1-Q2Vthdca49I.en.vtt 3.67Кб
05. Deployment L4 C4 V1-Q2Vthdca49I.mp4 6.13Мб
05. Deployment L4 C4 V1-Q2Vthdca49I.zh-CN.vtt 2.97Кб
05. Deployment L5 C4 V1-v7dYwxuKXzI.en.vtt 1.07Кб
05. Deployment L5 C4 V1-v7dYwxuKXzI.mp4 1.26Мб
05. Deployment L5 C4 V1-v7dYwxuKXzI.zh-CN.vtt 915б
05. Dynamic Programming.html 6.26Кб
05. Encoding Words, Solution.html 6.74Кб
05. Exercise Creating Time Series.html 6.85Кб
05. Exercise OOP Syntax Practice - Part 1.html 9.09Кб
05. Git Diff.html 8.70Кб
05. How Computers Interpret Images.html 12.68Кб
05. Interview with Art - Part 1.html 7.95Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.ar.vtt 4.59Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.en.vtt 3.82Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.ja-JP.vtt 4.29Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.mp4 21.79Мб
05. Interview with Art - Part 1-ClLYamtaO-Q.pt-BR.vtt 4.00Кб
05. Interview with Art - Part 1-ClLYamtaO-Q.zh-CN.vtt 3.40Кб
05. Knowledge.html 12.51Кб
05. L1 032 Model Design V1 RENDER V2-zxNoSTZ3s90.en.vtt 2.79Кб
05. L1 032 Model Design V1 RENDER V2-zxNoSTZ3s90.mp4 10.22Мб
05. L1 032 Model Design V1 RENDER V2-zxNoSTZ3s90.zh-CN.vtt 2.40Кб
05. L4 05 Dynamic Programming V1 V1-vAwu-sW9GJE.en.vtt 6.36Кб
05. L4 05 Dynamic Programming V1 V1-vAwu-sW9GJE.mp4 7.14Мб
05. L4 05 Dynamic Programming V1 V1-vAwu-sW9GJE.zh-CN.vtt 5.55Кб
05. Launch an Instance.html 13.40Кб
05. Lesson Outro.html 5.37Кб
05. LinearLearner _ Class Imbalance.html 7.68Кб
05. Machine Learning Workflow.html 9.19Кб
05. Merging.html 17.11Кб
05. Mini-Project Solution - Tuning the Model.html 6.71Кб
05. Mini-Project Updating a Sentiment Analysis Model.html 7.48Кб
05. Model Design.html 8.65Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.ar.vtt 3.28Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.en.vtt 2.57Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.mp4 3.77Мб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.pt-BR.vtt 2.76Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.zh-CN.vtt 2.46Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.ar.vtt 6.92Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.en.vtt 5.22Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.mp4 6.19Мб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.pt-BR.vtt 5.56Кб
05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.zh-CN.vtt 4.72Кб
05. Normal Distribution.html 6.40Кб
05. Outro.html 5.76Кб
05. Pre-Notebook Transfer Learning.html 8.15Кб
05. Quiz Clean Code.html 11.89Кб
05. Sequence Batching.html 6.59Кб
05. Sequence-Batching-Z4OiyU0Cldg.en.vtt 2.09Кб
05. Sequence-Batching-Z4OiyU0Cldg.mp4 2.29Мб
05. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt 2.33Кб
05. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt 1.92Кб
05. Setting up a Notebook Instance.html 11.90Кб
05. Solution Simple Neural Network.html 6.78Кб
05. Text Processing, Bag of Words.html 9.65Кб
05. The Front-End.html 8.47Кб
05. The Front End-CspuxLGFM4U.en.vtt 1.88Кб
05. The Front End-CspuxLGFM4U.mp4 8.64Мб
05. The Front End-CspuxLGFM4U.pt-BR.vtt 1.96Кб
05. The Front End-CspuxLGFM4U.zh-CN.vtt 1.69Кб
05. Unit Testing Tools.html 8.08Кб
05. Use Your Elevator Pitch on LinkedIn.html 9.77Кб
05. Viewing File Changes.html 17.36Кб
05. Windows Setup.html 10.90Кб
06. 02 Writing Modular Code V2-qN6EOyNlSnk.en.vtt 7.63Кб
06. 02 Writing Modular Code V2-qN6EOyNlSnk.mp4 7.71Мб
06. 02 Writing Modular Code V2-qN6EOyNlSnk.pt-BR.vtt 8.52Кб
06. 02 Writing Modular Code V2-qN6EOyNlSnk.zh-CN.vtt 6.75Кб
06. 23 Train Script V2-1cbvRmKvQIg.en.vtt 8.56Кб
06. 23 Train Script V2-1cbvRmKvQIg.mp4 19.45Мб
06. 23 Train Script V2-1cbvRmKvQIg.zh-CN.vtt 7.42Кб
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.en.vtt 7.71Кб
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.mp4 20.47Мб
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.pt-BR.vtt 7.92Кб
06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.zh-CN.vtt 6.93Кб
06. 4 A Simple Solution V2-Jh3mbomqpw8.en.vtt 2.52Кб
06. 4 A Simple Solution V2-Jh3mbomqpw8.mp4 3.47Мб
06. 4 A Simple Solution V2-Jh3mbomqpw8.pt-BR.vtt 2.13Кб
06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.en.vtt 3.60Кб
06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.mp4 4.59Мб
06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.zh-CN.vtt 3.03Кб
06. 6 Screencast HTML Code V2-G7fBus1JSc0.en.vtt 7.78Кб
06. 6 Screencast HTML Code V2-G7fBus1JSc0.mp4 10.28Мб
06. 6 Screencast HTML Code V2-G7fBus1JSc0.pt-BR.vtt 8.14Кб
06. 6 Screencast HTML Code V2-G7fBus1JSc0.zh-CN.vtt 7.22Кб
06. A Couple of Notes about OOP.html 15.48Кб
06. A Simple Solution.html 7.02Кб
06. BertelsmannArvato Project Workspace.html 7.05Кб
06. Building and Deploying the Model.html 7.91Кб
06. Cloning the Deployment Notebooks.html 9.58Кб
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.en.vtt 3.11Кб
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.mp4 5.51Мб
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.pt-BR.vtt 3.16Кб
06. ConNet 03 MLPStructure_ClassScore V1 V1-fP0Odiai8sk.zh-CN.vtt 2.59Кб
06. Course Outro.html 5.85Кб
06. Create Your Profile With SEO In Mind.html 9.47Кб
06. Deployment L2 C3 V2-jqL74whe9yo.en.vtt 1.81Кб
06. Deployment L2 C3 V2-jqL74whe9yo.mp4 3.89Мб
06. Deployment L2 C3 V2-jqL74whe9yo.zh-CN.vtt 1.49Кб
06. Deployment L3 C4b V1-JCiQhhXbeuc.en.vtt 8.45Кб
06. Deployment L3 C4b V1-JCiQhhXbeuc.mp4 17.17Мб
06. Deployment L3 C4b V1-JCiQhhXbeuc.zh-CN.vtt 6.79Кб
06. Deployment L4 C5 V2-i-EjGkZ8z30.en.vtt 4.58Кб
06. Deployment L4 C5 V2-i-EjGkZ8z30.mp4 11.24Мб
06. Deployment L4 C5 V2-i-EjGkZ8z30.zh-CN.vtt 3.62Кб
06. Deployment L5 C5 V1-75RxW3R6674.en.vtt 5.25Кб
06. Deployment L5 C5 V1-75RxW3R6674.mp4 8.06Мб
06. Deployment L5 C5 V1-75RxW3R6674.zh-CN.vtt 4.42Кб
06. Exercise Define a LinearLearner.html 8.89Кб
06. Exercise Training Script.html 6.78Кб
06. Getting Rid of Zero-Length.html 6.76Кб
06. Having Git Ignore Files.html 14.02Кб
06. HTML.html 13.88Кб
06. Identify fixes for example “bad” profile.html 11.01Кб
06. Identify fixes for example “bad” profile-AF07y1oAim0.ar.vtt 490б
06. Identify fixes for example “bad” profile-AF07y1oAim0.en.vtt 371б
06. Identify fixes for example “bad” profile-AF07y1oAim0.ja-JP.vtt 473б
06. Identify fixes for example “bad” profile-AF07y1oAim0.mp4 1.14Мб
06. Identify fixes for example “bad” profile-AF07y1oAim0.pt-BR.vtt 457б
06. Identify fixes for example “bad” profile-AF07y1oAim0.zh-CN.vtt 357б
06. Identify fixes for example “bad” profile-ncFtwW5urHk.ar.vtt 1.94Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.en.vtt 1.39Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.ja-JP.vtt 1.61Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4 1.59Мб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.pt-BR.vtt 1.48Кб
06. Identify fixes for example “bad” profile-ncFtwW5urHk.zh-CN.vtt 1.31Кб
06. L1C05 HSV2 Population Segmentation With KMeans V1-3pXFLrnk7q0.en.vtt 2.65Кб
06. L1C05 HSV2 Population Segmentation With KMeans V1-3pXFLrnk7q0.mp4 8.04Мб
06. L1C05 HSV2 Population Segmentation With KMeans V1-3pXFLrnk7q0.zh-CN.vtt 2.23Кб
06. Loading and Testing the New Data.html 6.58Кб
06. Login to the Instance.html 10.13Кб
06. Merge Conflicts.html 20.82Кб
06. Mini-Project Solution - Fixing the Error and Testing.html 6.74Кб
06. MLP Structure _ Class Scores.html 11.34Кб
06. Notebook Transfer Learning, Flowers.html 6.64Кб
06. Notes On OOP-NcgDIWm6iBA.en.vtt 6.10Кб
06. Notes On OOP-NcgDIWm6iBA.mp4 6.26Мб
06. Notes On OOP-NcgDIWm6iBA.pt-BR.vtt 6.08Кб
06. Notes On OOP-NcgDIWm6iBA.zh-CN.vtt 5.35Кб
06. Onward.html 5.81Кб
06. Onward-iXbMaTwfIJI.ar.vtt 1.43Кб
06. Onward-iXbMaTwfIJI.en.vtt 1.06Кб
06. Onward-iXbMaTwfIJI.mp4 3.51Мб
06. Onward-iXbMaTwfIJI.pt-BR.vtt 1.12Кб
06. Onward-iXbMaTwfIJI.zh-CN.vtt 973б
06. Population Segmentation.html 8.74Кб
06. Pre-Notebook Character-Level RNN.html 8.77Кб
06. Pre-Notebook Weight Initialization, Normal Distribution.html 7.49Кб
06. Project Files _ Evaluation.html 8.88Кб
06. Quiz Unit Tests.html 7.14Кб
06. Solution Split Data.html 8.98Кб
06. Student Hub.html 8.89Кб
06. TF-IDF.html 6.20Кб
06. TF-IDF-XZBiBIRcACE.en.vtt 2.38Кб
06. TF-IDF-XZBiBIRcACE.mp4 2.05Мб
06. TF-IDF-XZBiBIRcACE.zh-CN.vtt 2.07Кб
06. Viewing A Specific Commit.html 11.80Кб
06. What is Cloud Computing _ Why Would We Use It.html 17.21Кб
06. World Bank API [advanced version].html 8.52Кб
06. Writing Modular Code.html 10.53Кб
07. 04 Do Your Research V1-CR4JeAn1fgk.en.vtt 2.69Кб
07. 04 Do Your Research V1-CR4JeAn1fgk.mp4 6.43Мб
07. 04 Do Your Research V1-CR4JeAn1fgk.pt-BR.vtt 2.80Кб
07. 04 Do Your Research V1-CR4JeAn1fgk.zh-CN.vtt 2.22Кб
07. 05 Convert To JSON V2-YyxfrVQcM1E.en.vtt 2.87Кб
07. 05 Convert To JSON V2-YyxfrVQcM1E.mp4 6.66Мб
07. 05 Default LinearLearner V2-WaqDbA_5dNE.en.vtt 3.10Кб
07. 05 Default LinearLearner V2-WaqDbA_5dNE.mp4 4.87Мб
07. 05 Default LinearLearner V2-WaqDbA_5dNE.zh-CN.vtt 2.59Кб
07. 24 Complete Training Script V1-xmrB3sqbeTU.en.vtt 4.16Кб
07. 24 Complete Training Script V1-xmrB3sqbeTU.mp4 8.61Мб
07. 24 Complete Training Script V1-xmrB3sqbeTU.zh-CN.vtt 3.49Кб
07. 6 Cleaning And Padding V1-UgPo1_cq-0g.mp4 6.36Мб
07. 6 Cleaning And Padding V1-UgPo1_cq-0g.zh-CN.vtt 3.84Кб
07. Access the Career Portal.html 8.28Кб
07. A Repository_s History - Outro-9rUf2HbdAd8.ar.vtt 1.47Кб
07. A Repository_s History - Outro-9rUf2HbdAd8.en.vtt 1.01Кб
07. A Repository_s History - Outro-9rUf2HbdAd8.mp4 4.39Мб
07. A Repository_s History - Outro-9rUf2HbdAd8.pt-BR.vtt 1.06Кб
07. A Repository_s History - Outro-9rUf2HbdAd8.zh-CN.vtt 933б
07. Autoencoders 05 Learnable Sampling V2 RENDER V4-KjztLwPksj8.en.vtt 4.16Кб
07. Autoencoders 05 Learnable Sampling V2 RENDER V4-KjztLwPksj8.mp4 6.26Мб
07. Autoencoders 05 Learnable Sampling V2 RENDER V4-KjztLwPksj8.pt-BR.vtt 4.08Кб
07. Boston Housing In-Depth - Creating a Tuning Job.html 8.29Кб
07. Capstone-bq-H7M5BU3U.en.vtt 1.59Кб
07. Capstone-bq-H7M5BU3U.mp4 7.20Мб
07. Capstone-bq-H7M5BU3U.zh-CN.vtt 1.37Кб
07. Cleaning _ Padding Data.html 6.63Кб
07. Deployment L3 C5b V1-WTwj-7XcTro.en.vtt 10.36Кб
07. Deployment L3 C5b V1-WTwj-7XcTro.mp4 17.32Мб
07. Deployment L3 C5b V1-WTwj-7XcTro.zh-CN.vtt 8.53Кб
07. Deployment L4 C6 V2-vlsZ-jC5C8Y.en.vtt 7.46Кб
07. Deployment L4 C6 V2-vlsZ-jC5C8Y.mp4 12.48Мб
07. Deployment L4 C6 V2-vlsZ-jC5C8Y.zh-CN.vtt 5.96Кб
07. Deployment L5 C6 V1-sEBK1dmiUfE.en.vtt 6.27Кб
07. Deployment L5 C6 V1-sEBK1dmiUfE.mp4 9.69Мб
07. Deployment L5 C6 V1-sEBK1dmiUfE.zh-CN.vtt 5.09Кб
07. Do Your Research.html 10.58Кб
07. Exercise Convert to JSON.html 6.85Кб
07. Exercise HTML.html 8.78Кб
07. Exercise OOP Syntax Practice - Part 2.html 9.10Кб
07. Exploring the New Data.html 6.55Кб
07. Freezing Weights _ Last Layer.html 6.76Кб
07. Freezing Weights-ssNIX_2QfMQ.en.vtt 3.34Кб
07. Freezing Weights-ssNIX_2QfMQ.mp4 4.55Мб
07. Freezing Weights-ssNIX_2QfMQ.pt-BR.vtt 3.23Кб
07. Freezing Weights-ssNIX_2QfMQ.zh-CN.vtt 2.92Кб
07. How to Use a Deployed Model.html 9.03Кб
07. Is Everything Set Up.html 9.03Кб
07. K-means, Overview.html 11.06Кб
07. K-means Clustering-Cf_LSDCEBzk.en.vtt 6.44Кб
07. K-means Clustering-Cf_LSDCEBzk.mp4 6.06Мб
07. K-means Clustering-Cf_LSDCEBzk.zh-CN.vtt 5.84Кб
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.en.vtt 3.26Кб
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.mp4 5.90Мб
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.pt-BR.vtt 3.68Кб
07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.zh-CN.vtt 2.95Кб
07. Learnable Upsampling.html 7.13Кб
07. Notebook Character-Level RNN.html 7.02Кб
07. Notebook Exploring the Data.html 6.62Кб
07. Notebook Normal _ No Initialization.html 6.81Кб
07. One-Hot Encoding.html 6.38Кб
07. One-Hot Encoding-a0j1CDXFYZI.en.vtt 1.40Кб
07. One-Hot Encoding-a0j1CDXFYZI.mp4 1.08Мб
07. One-Hot Encoding-a0j1CDXFYZI.pt-BR.vtt 1.59Кб
07. One-Hot Encoding-a0j1CDXFYZI.zh-CN.vtt 1.23Кб
07. Outro.html 6.11Кб
07. Outro.html 5.77Кб
07. Outro.html 5.27Кб
07. Outro-5eyvsMvAPYs.ar.vtt 1.55Кб
07. Outro-5eyvsMvAPYs.en.vtt 1.33Кб
07. Outro-5eyvsMvAPYs.mp4 5.14Мб
07. Outro-5eyvsMvAPYs.pt-BR.vtt 1.39Кб
07. Outro-5eyvsMvAPYs.zh-CN.vtt 1.25Кб
07. Profile Essentials.html 11.27Кб
07. Python and APIs [advanced version].html 6.74Кб
07. Quick Fixes #1.html 7.77Кб
07. Quick Fixes-Lb9e2KemR6I.ar.vtt 2.61Кб
07. Quick Fixes-Lb9e2KemR6I.en.vtt 1.89Кб
07. Quick Fixes-Lb9e2KemR6I.ja-JP.vtt 2.17Кб
07. Quick Fixes-Lb9e2KemR6I.mp4 3.99Мб
07. Quick Fixes-Lb9e2KemR6I.pt-BR.vtt 2.06Кб
07. Quick Fixes-Lb9e2KemR6I.zh-CN.vtt 1.87Кб
07. Quiz Refactoring - Wine Quality.html 8.37Кб
07. Solution Complete Training Script.html 6.84Кб
07. Solution Default LinearLearner.html 7.72Кб
07. Starbucks Project Overview.html 9.29Кб
07. Test Driven Development and Data Science.html 8.88Кб
07. Why Cloud Computing .html 16.06Кб
08. 04 Implementing CharRNN V2-MMtgZXzFB10.en.vtt 11.56Кб
08. 04 Implementing CharRNN V2-MMtgZXzFB10.mp4 15.77Мб
08. 04 Implementing CharRNN V2-MMtgZXzFB10.pt-BR.vtt 10.73Кб
08. 04 Implementing CharRNN V2-MMtgZXzFB10.zh-CN.vtt 9.43Кб
08. 07 DeepAR Estimator V2-1Wx-LK9TVWY.en.vtt 2.20Кб
08. 07 DeepAR Estimator V2-1Wx-LK9TVWY.mp4 3.45Мб
08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.en.vtt 5.04Кб
08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.mp4 5.48Мб
08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.zh-CN.vtt 4.19Кб
08. 7 Sol Default Init V1-xIn8XLbR1LM.en.vtt 5.65Кб
08. 7 Sol Default Init V1-xIn8XLbR1LM.mp4 8.15Мб
08. 7 Sol Default Init V1-xIn8XLbR1LM.pt-BR.vtt 5.55Кб
08. 7 Sol Default Init V1-xIn8XLbR1LM.zh-CN.vtt 4.79Кб
08. Advanced API Code Walk-through-AkqO534YooE.en.vtt 11.39Кб
08. Advanced API Code Walk-through-AkqO534YooE.mp4 17.73Мб
08. Advanced API Code Walk-through-AkqO534YooE.pt-BR.vtt 11.66Кб
08. Advanced API Code Walk-through-AkqO534YooE.zh-CN.vtt 10.34Кб
08. Autoencoders 06 Transpose Convolution RENDER V4-hnnLAC1Q0zg.en.vtt 3.72Кб
08. Autoencoders 06 Transpose Convolution RENDER V4-hnnLAC1Q0zg.mp4 3.32Мб
08. Autoencoders 06 Transpose Convolution RENDER V4-hnnLAC1Q0zg.pt-BR.vtt 3.23Кб
08. Boston Housing Example - Getting the Data Ready.html 12.59Кб
08. Boston Housing In-Depth - Monitoring the Tuning Job.html 6.74Кб
08. Building a New Model.html 6.54Кб
08. Commenting Object-Oriented Code.html 10.99Кб
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.en.vtt 7.51Кб
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.mp4 6.55Мб
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.pt-BR.vtt 7.48Кб
08. ConNet 05 Loss_Optimization V1 V3-BmPDtSXv18w.zh-CN.vtt 6.12Кб
08. Creating and Using an Endpoint.html 8.75Кб
08. Creating a Notebook Instance.html 9.92Кб
08. Custom SKLearn Model.html 7.45Кб
08. Deployment L2 C4 V1-78y5cTR-JxM.en.vtt 6.21Кб
08. Deployment L2 C4 V1-78y5cTR-JxM.mp4 10.63Мб
08. Deployment L2 C4 V1-78y5cTR-JxM.zh-CN.vtt 5.29Кб
08. Deployment L4 C7 V1-WXjIkSHYEyM.en.vtt 1.89Кб
08. Deployment L4 C7 V1-WXjIkSHYEyM.mp4 2.44Мб
08. Deployment L4 C7 V1-WXjIkSHYEyM.zh-CN.vtt 1.61Кб
08. Deployment L5 C7 V1-RUVxrKcWAsU.en.vtt 9.22Кб
08. Deployment L5 C7 V1-RUVxrKcWAsU.mp4 14.62Мб
08. Deployment L5 C7 V1-RUVxrKcWAsU.zh-CN.vtt 7.49Кб
08. Div and Span.html 9.30Кб
08. Div and Span-cbKA_dvthcY.en.vtt 2.35Кб
08. Div and Span-cbKA_dvthcY.mp4 2.91Мб
08. Div and Span-cbKA_dvthcY.pt-BR.vtt 2.40Кб
08. Div and Span-cbKA_dvthcY.zh-CN.vtt 2.10Кб
08. Exercise Format Data _ Train the LinearLearner.html 8.42Кб
08. Implementing a Char-RNN.html 7.00Кб
08. L1C3 Creating A Notebook Instance V2-w2GBAnhUlOw.en.vtt 7.26Кб
08. L1C3 Creating A Notebook Instance V2-w2GBAnhUlOw.mp4 8.84Мб
08. L1C3 Creating A Notebook Instance V2-w2GBAnhUlOw.zh-CN.vtt 6.42Кб
08. L2 2 11 Logging V2-9qKQdRoIMbU.en.vtt 1.05Кб
08. L2 2 11 Logging V2-9qKQdRoIMbU.mp4 3.02Мб
08. L2 2 11 Logging V2-9qKQdRoIMbU.pt-BR.vtt 1.25Кб
08. L2 2 11 Logging V2-9qKQdRoIMbU.zh-CN.vtt 937б
08. Last Layer-4LniBMFI53g.en.vtt 6.46Кб
08. Last Layer-4LniBMFI53g.mp4 10.03Мб
08. Last Layer-4LniBMFI53g.pt-BR.vtt 6.13Кб
08. Last Layer-4LniBMFI53g.zh-CN.vtt 5.25Кб
08. Logging.html 7.16Кб
08. Loss _ Optimization.html 10.68Кб
08. Machine Learning Applications.html 9.76Кб
08. Machine Learning in the Workplace-Q4rgQo6ofoc.en.vtt 3.47Кб
08. Machine Learning in the Workplace-Q4rgQo6ofoc.mp4 14.28Мб
08. Machine Learning in the Workplace-Q4rgQo6ofoc.zh-CN.vtt 2.93Кб
08. Padded Features, Solution.html 6.75Кб
08. Quick Fixes #2.html 8.75Кб
08. Quick Fixes #2-It6AEuSDQw0.ar.vtt 608б
08. Quick Fixes #2-It6AEuSDQw0.en.vtt 435б
08. Quick Fixes #2-It6AEuSDQw0.ja-JP.vtt 487б
08. Quick Fixes #2-It6AEuSDQw0.mp4 2.25Мб
08. Quick Fixes #2-It6AEuSDQw0.pt-BR.vtt 453б
08. Quick Fixes #2-It6AEuSDQw0.zh-CN.vtt 410б
08. Solution and Default Initialization.html 6.40Кб
08. Solution Formatting JSON Lines _ DeepAR Estimator.html 6.91Кб
08. Solution Refactoring - Wine Quality.html 8.36Кб
08. Starbucks Project Workspace.html 7.03Кб
08. Training a Classifier.html 6.03Кб
08. Transpose Convolutions.html 7.13Кб
08. Word Embeddings.html 6.37Кб
08. Word Embeddings-4mM_S9L2_JQ.en.vtt 1.55Кб
08. Word Embeddings-4mM_S9L2_JQ.mp4 1.22Мб
08. Word Embeddings-4mM_S9L2_JQ.pt-BR.vtt 1.71Кб
08. Word Embeddings-4mM_S9L2_JQ.zh-CN.vtt 1.28Кб
08. Work Experiences _ Accomplishments.html 9.80Кб
08. World Bank Data Dashboard [advanced version].html 8.40Кб
09. 05 Batching Data V1-9Eg0wf3eW-k.en.vtt 5.17Кб
09. 05 Batching Data V1-9Eg0wf3eW-k.mp4 5.82Мб
09. 05 Batching Data V1-9Eg0wf3eW-k.pt-BR.vtt 4.92Кб
09. 05 Batching Data V1-9Eg0wf3eW-k.zh-CN.vtt 4.24Кб
09. 06 Defining A Network V1-9gvaQvyfLfY.en.vtt 7.13Кб
09. 06 Defining A Network V1-9gvaQvyfLfY.mp4 9.78Мб
09. 06 Defining A Network V1-9gvaQvyfLfY.pt-BR.vtt 6.84Кб
09. 06 Defining A Network V1-9gvaQvyfLfY.zh-CN.vtt 6.01Кб
09. 091 Training Job V1--whnaHFkPxU.en.vtt 5.44Кб
09. 091 Training Job V1--whnaHFkPxU.mp4 15.89Мб
09. 091 Training Job V1--whnaHFkPxU.zh-CN.vtt 4.63Кб
09. 26 PyTorch Estimator Model V1-pJOkQfMtxpc.en.vtt 7.18Кб
09. 26 PyTorch Estimator Model V1-pJOkQfMtxpc.mp4 16.68Мб
09. 26 PyTorch Estimator Model V1-pJOkQfMtxpc.zh-CN.vtt 6.20Кб
09. 7 Convolutional Autoenc V1-QCA8QeZeDW8.en.vtt 6.70Кб
09. 7 Convolutional Autoenc V1-QCA8QeZeDW8.mp4 8.24Мб
09. 7 Convolutional Autoenc V1-QCA8QeZeDW8.pt-BR.vtt 6.05Кб
09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.en.vtt 6.61Кб
09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.mp4 9.01Мб
09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.zh-CN.vtt 5.66Кб
09. Additional Material.html 6.54Кб
09. A Gaussian Class.html 15.96Кб
09. Batching Data, Solution.html 6.60Кб
09. Boston Housing Example - Training the Model.html 9.91Кб
09. Boston Housing In-Depth - Building and Testing the Model.html 6.71Кб
09. Build and Strengthen Your Network.html 10.65Кб
09. Building a Lambda Function.html 15.65Кб
09. CNN Project Dog Breed Classifier.html 9.12Кб
09. Convolutional Autoencoder.html 7.07Кб
09. Create a SageMaker Notebook Instance.html 10.73Кб
09. Defining a Network in PyTorch.html 11.75Кб
09. Deployment L2 C5 V1-rqYlkCTLmIY.en.vtt 5.82Кб
09. Deployment L2 C5 V1-rqYlkCTLmIY.mp4 8.36Мб
09. Deployment L2 C5 V1-rqYlkCTLmIY.zh-CN.vtt 5.04Кб
09. Deployment L3 C6 V1-jOXETK4AerU.en.vtt 9.36Кб
09. Deployment L3 C6 V1-jOXETK4AerU.mp4 18.80Мб
09. Deployment L3 C6 V1-jOXETK4AerU.zh-CN.vtt 7.90Кб
09. Deployment L4 C8 V1-ap7d7DZL0Ic.en.vtt 3.00Кб
09. Deployment L4 C8 V1-ap7d7DZL0Ic.mp4 6.44Мб
09. Deployment L4 C8 V1-ap7d7DZL0Ic.zh-CN.vtt 2.50Кб
09. Deployment L5 C8 V1-Vdacqn_w-e4.en.vtt 4.08Кб
09. Deployment L5 C8 V1-Vdacqn_w-e4.mp4 3.81Мб
09. Deployment L5 C8 V1-Vdacqn_w-e4.zh-CN.vtt 3.49Кб
09. Efficient Code.html 8.58Кб
09. Exercise DeepAR Estimator.html 8.05Кб
09. Gaussian Class-TVzNdFYyJIU.en.vtt 2.11Кб
09. Gaussian Class-TVzNdFYyJIU.mp4 6.04Мб
09. Gaussian Class-TVzNdFYyJIU.pt-BR.vtt 2.11Кб
09. Gaussian Class-TVzNdFYyJIU.zh-CN.vtt 1.84Кб
09. IDs and Classes.html 10.70Кб
09. IDs and Classes-jnfDqdxDbO4.en.vtt 3.41Кб
09. IDs and Classes-jnfDqdxDbO4.mp4 4.43Мб
09. IDs and Classes-jnfDqdxDbO4.pt-BR.vtt 3.84Кб
09. IDs and Classes-jnfDqdxDbO4.zh-CN.vtt 3.10Кб
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.en.vtt 2.10Кб
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.mp4 8.40Мб
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.pt-BR.vtt 2.42Кб
09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.zh-CN.vtt 1.83Кб
09. Log Messages.html 7.71Кб
09. Machine Learning Applications.html 10.32Кб
09. PyTorch Estimator.html 6.81Кб
09. SageMaker Retrospective.html 8.93Кб
09. Solution Training Job.html 7.65Кб
09. TensorDataset _ Batching Data.html 7.94Кб
09. Word2Vec.html 6.31Кб
09. Word2Vec-7jjappzGRe0.en.vtt 3.42Кб
09. Word2Vec-7jjappzGRe0.mp4 2.98Мб
09. Word2Vec-7jjappzGRe0.pt-BR.vtt 3.81Кб
09. Word2Vec-7jjappzGRe0.zh-CN.vtt 2.84Кб
09. Writing READMEs with Walter.html 8.20Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.ar.vtt 1.50Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.en.vtt 1.34Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.ja-JP.vtt 1.48Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.mp4 6.92Мб
09. Writing READMEs with Walter-DQEfT2Zq5_o.pt-BR.vtt 1.22Кб
09. Writing READMEs with Walter-DQEfT2Zq5_o.zh-CN.vtt 1.18Кб
1. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url 286б
10. 03 Optimizing Common Books V1-WF9n_19V08g.en.vtt 4.90Кб
10. 03 Optimizing Common Books V1-WF9n_19V08g.mp4 8.10Мб
10. 03 Optimizing Common Books V1-WF9n_19V08g.pt-BR.vtt 5.58Кб
10. 03 Optimizing Common Books V1-WF9n_19V08g.zh-CN.vtt 4.60Кб
10. 06 Defining Model V2-_LWzyqq4hCY.en.vtt 5.76Кб
10. 06 Defining Model V2-_LWzyqq4hCY.mp4 9.05Мб
10. 06 Defining Model V2-_LWzyqq4hCY.pt-BR.vtt 5.99Кб
10. 06 Defining Model V2-_LWzyqq4hCY.zh-CN.vtt 4.87Кб
10. 07 Training The Network V1-904bfqibcCw.en.vtt 6.54Кб
10. 07 Training The Network V1-904bfqibcCw.mp4 10.52Мб
10. 07 Training The Network V1-904bfqibcCw.pt-BR.vtt 6.12Кб
10. 07 Training The Network V1-904bfqibcCw.zh-CN.vtt 5.40Кб
10. 08 Complete Estimator Hyperparams V2-ah7muNBc3dI.en.vtt 2.77Кб
10. 08 Complete Estimator Hyperparams V2-ah7muNBc3dI.mp4 5.99Мб
10. 9 DefiningModel V1-SpvIZl1YQRI.en.vtt 5.05Кб
10. 9 DefiningModel V1-SpvIZl1YQRI.mp4 5.63Мб
10. 9 DefiningModel V1-SpvIZl1YQRI.zh-CN.vtt 4.06Кб
10. Boston Housing Example - Testing the Model.html 8.12Кб
10. Building an API.html 7.78Кб
10. Cleaning Up Your AWS Account.html 8.67Кб
10. Defining the Model.html 7.08Кб
10. Defining the Model.html 6.70Кб
10. Deployment L2 C6 V1-CZRKuS_qYtg.en.vtt 6.21Кб
10. Deployment L2 C6 V1-CZRKuS_qYtg.mp4 10.05Мб
10. Deployment L2 C6 V1-CZRKuS_qYtg.zh-CN.vtt 5.09Кб
10. Deployment L3 C7 V1-AzBQ-aDQSG4.en.vtt 5.16Кб
10. Deployment L3 C7 V1-AzBQ-aDQSG4.mp4 7.75Мб
10. Deployment L3 C7 V1-AzBQ-aDQSG4.zh-CN.vtt 4.28Кб
10. Deployment L5 C9 V1-8z24cb3EfMc.en.vtt 3.78Кб
10. Deployment L5 C9 V1-8z24cb3EfMc.mp4 4.43Мб
10. Deployment L5 C9 V1-8z24cb3EfMc.zh-CN.vtt 3.04Кб
10. Dog Project Workspace.html 7.00Кб
10. Exercise Create a PyTorchModel _ Endpoint.html 9.50Кб
10. Exercise HTML Div, Span, IDs, Classes.html 8.84Кб
10. GloVe.html 6.31Кб
10. GloVe-KK3PMIiIn8o.en.vtt 4.21Кб
10. GloVe-KK3PMIiIn8o.mp4 3.81Мб
10. GloVe-KK3PMIiIn8o.pt-BR.vtt 4.55Кб
10. GloVe-KK3PMIiIn8o.zh-CN.vtt 3.60Кб
10. How the Gaussian Class Works.html 8.88Кб
10. How The Gaussian Class Works-N-5I0d1zJHI.en.vtt 5.25Кб
10. How The Gaussian Class Works-N-5I0d1zJHI.mp4 8.09Мб
10. How The Gaussian Class Works-N-5I0d1zJHI.pt-BR.vtt 4.83Кб
10. How The Gaussian Class Works-N-5I0d1zJHI.zh-CN.vtt 4.55Кб
10. Interview with Art - Part 2.html 7.93Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.ar.vtt 2.82Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.en.vtt 2.16Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.ja-JP.vtt 2.53Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4 13.17Мб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.pt-BR.vtt 2.40Кб
10. Interview with Art - Part 2-Vvzl2J5K7-Y.zh-CN.vtt 2.07Кб
10. Logging.html 7.86Кб
10. Optimizing - Common Books.html 8.32Кб
10. Paths to Deployment.html 15.35Кб
10. Precision _ Recall, Overview.html 8.60Кб
10. Pre-Notebook Convolutional Autoencoder.html 9.25Кб
10. Pre-Notebook Population Segmentation.html 10.57Кб
10. Reaching Out on LinkedIn.html 9.36Кб
10. Solution Complete Estimator _ Hyperparameters.html 6.93Кб
10. Summary.html 7.59Кб
10. Training the Network.html 12.43Кб
11. 07 CharRNN Solution V1-ed33qePHrJM.en.vtt 11.40Кб
11. 07 CharRNN Solution V1-ed33qePHrJM.mp4 18.32Мб
11. 07 CharRNN Solution V1-ed33qePHrJM.pt-BR.vtt 11.12Кб
11. 07 CharRNN Solution V1-ed33qePHrJM.zh-CN.vtt 9.32Кб
11. 11 Making Predictions V2-BKOYIfgjsq8.en.vtt 5.96Кб
11. 11 Making Predictions V2-BKOYIfgjsq8.mp4 14.11Мб
11. 28 PyTorch Deployment Evaluation V2-qZTyQqo9FWM.en.vtt 5.12Кб
11. 28 PyTorch Deployment Evaluation V2-qZTyQqo9FWM.mp4 13.28Мб
11. 28 PyTorch Deployment Evaluation V2-qZTyQqo9FWM.zh-CN.vtt 4.42Кб
11. Boost Your Visibility.html 8.58Кб
11. Char-RNN, Solution.html 8.46Кб
11. Code Review.html 7.50Кб
11. Commit messages best practices.html 10.12Кб
11. Complete Sentiment RNN.html 12.93Кб
11. CSS.html 17.00Кб
11. CSS-s_sdzHR9cs0.en.vtt 9.85Кб
11. CSS-s_sdzHR9cs0.mp4 15.91Мб
11. CSS-s_sdzHR9cs0.pt-BR.vtt 10.17Кб
11. CSS-s_sdzHR9cs0.zh-CN.vtt 8.88Кб
11. Deployment L2 C7 V1-ouLvRqMMbbY.en.vtt 2.85Кб
11. Deployment L2 C7 V1-ouLvRqMMbbY.mp4 6.15Мб
11. Deployment L2 C7 V1-ouLvRqMMbbY.zh-CN.vtt 2.42Кб
11. Deployment L3 C8 V1-VgG41Q_a15I.en.vtt 5.10Кб
11. Deployment L3 C8 V1-VgG41Q_a15I.mp4 8.10Мб
11. Deployment L3 C8 V1-VgG41Q_a15I.zh-CN.vtt 4.24Кб
11. Deployment L5 C10 V1-ilnX9rUlV_w.en.vtt 6.24Кб
11. Deployment L5 C10 V1-ilnX9rUlV_w.mp4 8.21Мб
11. Deployment L5 C10 V1-ilnX9rUlV_w.zh-CN.vtt 5.07Кб
11. Embeddings for Deep Learning.html 6.47Кб
11. Embeddings For Deep Learning-gj8u1KG0H2w.en.vtt 5.11Кб
11. Embeddings For Deep Learning-gj8u1KG0H2w.mp4 4.70Мб
11. Embeddings For Deep Learning-gj8u1KG0H2w.pt-BR.vtt 5.60Кб
11. Embeddings For Deep Learning-gj8u1KG0H2w.zh-CN.vtt 4.74Кб
11. Exercise Code the Gaussian Class.html 9.07Кб
11. Exercise Data Loading _ Processing.html 8.73Кб
11. Exercise Deploy Estimator.html 9.12Кб
11. L1C4 DataLoading Processing 2 V2-YlG9T17KcbU.en.vtt 10.89Кб
11. L1C4 DataLoading Processing 2 V2-YlG9T17KcbU.mp4 26.27Мб
11. L1C4 DataLoading Processing 2 V2-YlG9T17KcbU.zh-CN.vtt 9.36Кб
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.en.vtt 1.02Кб
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.mp4 3.30Мб
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.pt-BR.vtt 1.21Кб
11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.zh-CN.vtt 966б
11. Making Predictions.html 6.82Кб
11. Mini-Project Building Your First Model.html 8.92Кб
11. Notebook Convolutional Autoencoder.html 7.58Кб
11. Paths to Deployment.html 9.40Кб
11. Pre-Notebook MLP Classification, Exercise.html 11.89Кб
11. Quiz Optimizing - Common Books.html 8.36Кб
11. SageMaker Tips and Tricks.html 7.43Кб
11. Selecting One Project.html 7.50Кб
11. Solution PyTorchModel _ Evaluation.html 6.87Кб
11. Using the Final Web Application.html 8.29Кб
12. 08 Making Predictions V3-BhrpV3kwATo.en.vtt 8.77Кб
12. 08 Making Predictions V3-BhrpV3kwATo.mp4 12.38Мб
12. 08 Making Predictions V3-BhrpV3kwATo.pt-BR.vtt 8.92Кб
12. 08 Making Predictions V3-BhrpV3kwATo.zh-CN.vtt 7.11Кб
12. 092 Deployment Evaluation V1-ZknaWInjSa4.en.vtt 6.59Кб
12. 092 Deployment Evaluation V1-ZknaWInjSa4.mp4 14.95Мб
12. 092 Deployment Evaluation V1-ZknaWInjSa4.zh-CN.vtt 5.58Кб
12. 8 Conv Solution V1-2_Yw9LLomCo.en.vtt 5.24Кб
12. 8 Conv Solution V1-2_Yw9LLomCo.mp4 7.82Мб
12. 8 Conv Solution V1-2_Yw9LLomCo.pt-BR.vtt 5.01Кб
12. Clean Up All Resources.html 10.95Кб
12. Convolutional Solution.html 7.50Кб
12. Deployment L2 C8 V1-utUxiW-tZrY.en.vtt 7.01Кб
12. Deployment L2 C8 V1-utUxiW-tZrY.mp4 10.90Мб
12. Deployment L2 C8 V1-utUxiW-tZrY.zh-CN.vtt 5.57Кб
12. Exercise CSS.html 8.78Кб
12. Exercise Predicting the Future.html 8.68Кб
12. L1C5 Data PreProcessing Solution-2jUouM70A1I.en.vtt 8.07Кб
12. L1C5 Data PreProcessing Solution-2jUouM70A1I.mp4 11.98Мб
12. L1C5 Data PreProcessing Solution-2jUouM70A1I.zh-CN.vtt 6.77Кб
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.en.vtt 2.34Кб
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.mp4 4.95Мб
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.pt-BR.vtt 2.23Кб
12. L3 10 Magic M V1 V3-9dEsv1aNUEE.zh-CN.vtt 1.95Кб
12. Magic Methods.html 9.48Кб
12. Magic Methods in Code-oDuXThOqans.en.vtt 4.09Кб
12. Magic Methods in Code-oDuXThOqans.mp4 4.36Мб
12. Magic Methods in Code-oDuXThOqans.pt-BR.vtt 3.77Кб
12. Magic Methods in Code-oDuXThOqans.zh-CN.vtt 3.51Кб
12. Making Predictions.html 7.47Кб
12. Mini-Project Solution.html 7.48Кб
12. Modeling.html 6.21Кб
12. Modeling-P4w_2rkxBvE.en.vtt 1.29Кб
12. Modeling-P4w_2rkxBvE.mp4 2.60Мб
12. Modeling-P4w_2rkxBvE.pt-BR.vtt 1.44Кб
12. Modeling-P4w_2rkxBvE.zh-CN.vtt 1.10Кб
12. Notebook MLP Classification, MNIST.html 11.01Кб
12. Production Environment-BH23Me3bbF4.en.vtt 2.91Кб
12. Production Environment-BH23Me3bbF4.mp4 7.14Мб
12. Production Environment-BH23Me3bbF4.zh-CN.vtt 2.39Кб
12. Production Environments.html 8.16Кб
12. Questions to Ask Yourself When Conducting a Code Review.html 8.34Кб
12. Reflect on your commit messages-_0AHmKkfjTo.ar.vtt 678б
12. Reflect on your commit messages-_0AHmKkfjTo.en.vtt 501б
12. Reflect on your commit messages-_0AHmKkfjTo.ja-JP.vtt 610б
12. Reflect on your commit messages-_0AHmKkfjTo.mp4 3.03Мб
12. Reflect on your commit messages-_0AHmKkfjTo.pt-BR.vtt 538б
12. Reflect on your commit messages-_0AHmKkfjTo.zh-CN.vtt 473б
12. Reflect on your commit messages.html 8.55Кб
12. Solution Data Pre-Processing.html 8.69Кб
12. Solution Deployment _ Evaluation.html 7.71Кб
12. Solution Optimizing - Common Books.html 8.37Кб
12. Summary.html 8.46Кб
12. Training the Model.html 13.30Кб
12. Up Next.html 8.09Кб
13. 09 One Solution V2-7q37WPjQhDA.en.vtt 7.93Кб
13. 09 One Solution V2-7q37WPjQhDA.mp4 11.59Мб
13. 09 One Solution V2-7q37WPjQhDA.pt-BR.vtt 7.60Кб
13. 09 One Solution V2-7q37WPjQhDA.zh-CN.vtt 6.66Кб
13. 10 Model Improvements V1-JjZMuUnxKw4.en.vtt 2.62Кб
13. 10 Model Improvements V1-JjZMuUnxKw4.mp4 3.48Мб
13. 10 Model Improvements V1-JjZMuUnxKw4.zh-CN.vtt 2.33Кб
13. 13 Predicting Future Data V2-HT5xKDOgHYw.en.vtt 2.89Кб
13. 13 Predicting Future Data V2-HT5xKDOgHYw.mp4 5.38Мб
13. 9 Upsampling Denoising V2-XX63da4EPN0.en.vtt 4.41Кб
13. 9 Upsampling Denoising V2-XX63da4EPN0.mp4 5.69Мб
13. 9 Upsampling Denoising V2-XX63da4EPN0.pt-BR.vtt 4.15Кб
13. Bootstrap Library.html 10.02Кб
13. Bootstrap Library-KsrqjguHWUI.en.vtt 18.08Кб
13. Bootstrap Library-KsrqjguHWUI.mp4 26.36Мб
13. Bootstrap Library-KsrqjguHWUI.pt-BR.vtt 16.37Кб
13. Bootstrap Library-KsrqjguHWUI.zh-CN.vtt 15.79Кб
13. Boston Housing In-Depth - Data Preparation.html 9.14Кб
13. Deployment L2 C9b V2-TA-Ms7djeL0.en.vtt 4.90Кб
13. Deployment L2 C9b V2-TA-Ms7djeL0.mp4 7.57Мб
13. Deployment L2 C9b V2-TA-Ms7djeL0.zh-CN.vtt 4.22Кб
13. Exercise Code Magic Methods.html 9.05Кб
13. Exercise Normalization.html 9.96Кб
13. Model Improvements.html 7.65Кб
13. One Solution.html 11.99Кб
13. Participating in open source projects.html 8.32Кб
13. Participating in open source projects-OxL-gMTizUA.ar.vtt 768б
13. Participating in open source projects-OxL-gMTizUA.en.vtt 476б
13. Participating in open source projects-OxL-gMTizUA.ja-JP.vtt 599б
13. Participating in open source projects-OxL-gMTizUA.mp4 2.77Мб
13. Participating in open source projects-OxL-gMTizUA.pt-BR.vtt 551б
13. Participating in open source projects-OxL-gMTizUA.zh-CN.vtt 438б
13. Production Environments.html 10.84Кб
13. Quiz Optimizing - Holiday Gifts.html 8.37Кб
13. Solution Predicting Future Data.html 6.87Кб
13. Summary of Skills.html 7.94Кб
13. Testing.html 10.57Кб
13. Tips for Conducting a Code Review.html 11.01Кб
13. Upsampling _ Denoising.html 7.58Кб
14. 10 Denoising V1-RIfEhKev24I.en.vtt 3.96Кб
14. 10 Denoising V1-RIfEhKev24I.mp4 6.00Мб
14. 10 Denoising V1-RIfEhKev24I.pt-BR.vtt 3.78Кб
14. 11 Model Tuning V1-bb7zG0TdtRM.en.vtt 4.51Кб
14. 11 Model Tuning V1-bb7zG0TdtRM.mp4 11.36Мб
14. 11 Model Tuning V1-bb7zG0TdtRM.zh-CN.vtt 3.79Кб
14. 13 Inheritance Example V1-uWT-HIHBjv0.en.vtt 1.93Кб
14. 13 Inheritance Example V1-uWT-HIHBjv0.mp4 2.00Мб
14. 13 Inheritance Example V1-uWT-HIHBjv0.pt-BR.vtt 1.91Кб
14. 13 Inheritance Example V1-uWT-HIHBjv0.zh-CN.vtt 1.64Кб
14. Boston Housing In-Depth - Creating a Training Job.html 7.57Кб
14. Clean Up All Resources.html 11.01Кб
14. Conclusion.html 6.74Кб
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.en.vtt 4.62Кб
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.mp4 3.34Мб
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.pt-BR.vtt 4.35Кб
14. ConNet10 ModelValidation V1 V2-b5934VsV3SA.zh-CN.vtt 3.83Кб
14. De-noising.html 6.98Кб
14. Deployment L2 C10b V1-1CIbWNUSZXo.en.vtt 6.51Кб
14. Deployment L2 C10b V1-1CIbWNUSZXo.mp4 16.82Мб
14. Deployment L2 C10b V1-1CIbWNUSZXo.zh-CN.vtt 5.38Кб
14. Endpoints _ REST APIs.html 16.98Кб
14. Exercise Bootstrap.html 8.79Кб
14. Improvement, Model Tuning.html 7.66Кб
14. Inference, Solution.html 13.23Кб
14. Inheritance.html 11.07Кб
14. Inheritance-1gsrxUwPI40.en.vtt 2.64Кб
14. Inheritance-1gsrxUwPI40.mp4 3.52Мб
14. Inheritance-1gsrxUwPI40.pt-BR.vtt 2.44Кб
14. Inheritance-1gsrxUwPI40.zh-CN.vtt 2.27Кб
14. Interview with Art - Part 3.html 7.94Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.ar.vtt 5.33Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.en.vtt 4.10Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.ja-JP.vtt 4.71Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.mp4 25.04Мб
14. Interview with Art - Part 3-M6PKr3S1rPg.pt-BR.vtt 4.56Кб
14. Interview with Art - Part 3-M6PKr3S1rPg.zh-CN.vtt 3.67Кб
14. L1C7 Normalization Solution V3-UDWwdG4e1a0.en.vtt 3.01Кб
14. L1C7 Normalization Solution V3-UDWwdG4e1a0.mp4 3.40Мб
14. L1C7 Normalization Solution V3-UDWwdG4e1a0.zh-CN.vtt 2.50Кб
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.en.vtt 671б
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.mp4 2.06Мб
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.pt-BR.vtt 841б
14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.zh-CN.vtt 547б
14. Model Validation.html 10.61Кб
14. Solution Normalization.html 8.66Кб
14. Solution Optimizing - Holiday Gifts.html 8.36Кб
15. 11 Validation Loss V2-uGPP_-pbBsc.en.vtt 8.76Кб
15. 11 Validation Loss V2-uGPP_-pbBsc.mp4 14.23Мб
15. 11 Validation Loss V2-uGPP_-pbBsc.pt-BR.vtt 8.43Кб
15. 11 Validation Loss V2-uGPP_-pbBsc.zh-CN.vtt 7.34Кб
15. 14 Screencast JavaScript V2-vgXUKgsT_48.en.vtt 7.92Кб
15. 14 Screencast JavaScript V2-vgXUKgsT_48.mp4 9.67Мб
15. 14 Screencast JavaScript V2-vgXUKgsT_48.pt-BR.vtt 7.39Кб
15. 14 Screencast JavaScript V2-vgXUKgsT_48.zh-CN.vtt 7.08Кб
15. Boston Housing In-Depth - Building a Model.html 7.56Кб
15. Deployment L2 C11b V1-JJyVsmcV2M4.en.vtt 6.04Кб
15. Deployment L2 C11b V1-JJyVsmcV2M4.mp4 10.78Мб
15. Deployment L2 C11b V1-JJyVsmcV2M4.zh-CN.vtt 5.10Кб
15. Documentation.html 8.65Кб
15. Endpoints _ REST APIs.html 14.92Кб
15. Exercise Improvement, Class Imbalance.html 10.53Кб
15. Exercise Inheritance with Clothing.html 9.09Кб
15. JavaScript.html 16.11Кб
15. L2 10 Documentation V1 V3-M45B2VbPgjo.en.vtt 1.51Кб
15. L2 10 Documentation V1 V3-M45B2VbPgjo.mp4 4.38Мб
15. L2 10 Documentation V1 V3-M45B2VbPgjo.pt-BR.vtt 1.75Кб
15. L2 10 Documentation V1 V3-M45B2VbPgjo.zh-CN.vtt 1.35Кб
15. Participating in open source projects 2.html 8.05Кб
15. Participating in open source projects 2-elZCLxVvJrY.ar.vtt 2.16Кб
15. Participating in open source projects 2-elZCLxVvJrY.en.vtt 1.46Кб
15. Participating in open source projects 2-elZCLxVvJrY.ja-JP.vtt 1.81Кб
15. Participating in open source projects 2-elZCLxVvJrY.mp4 3.30Мб
15. Participating in open source projects 2-elZCLxVvJrY.pt-BR.vtt 1.69Кб
15. Participating in open source projects 2-elZCLxVvJrY.zh-CN.vtt 1.30Кб
15. PCA, Overview.html 10.12Кб
15. PCA Toy Problem SC V1-uyl44T12yU8.en.vtt 9.88Кб
15. PCA Toy Problem SC V1-uyl44T12yU8.mp4 15.15Мб
15. PCA Toy Problem SC V1-uyl44T12yU8.zh-CN.vtt 8.10Кб
15. Pre-Notebook De-noising Autoencoder.html 9.20Кб
15. Validation Loss.html 11.49Кб
16. 04 Inline Comments V1--G6yg3Xhl8I.en.vtt 2.38Кб
16. 04 Inline Comments V1--G6yg3Xhl8I.mp4 3.54Мб
16. 04 Inline Comments V1--G6yg3Xhl8I.pt-BR.vtt 2.87Кб
16. 04 Inline Comments V1--G6yg3Xhl8I.zh-CN.vtt 2.26Кб
16. 13 Class Balancing Solution V1-ncoPZdiVLJg.en.vtt 3.29Кб
16. 13 Class Balancing Solution V1-ncoPZdiVLJg.mp4 7.25Мб
16. 13 Class Balancing Solution V1-ncoPZdiVLJg.zh-CN.vtt 2.91Кб
16. Boston Housing In-Depth - Creating a Batch Transform Job.html 7.55Кб
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.en.vtt 1.75Кб
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.mp4 2.40Мб
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.pt-BR.vtt 1.67Кб
16. ConNet 13 ImageClassification V1 V2-UHFBnitKraA.zh-CN.vtt 1.45Кб
16. Containers.html 15.59Кб
16. Deployment L2 C12 V1-JwPJMYRl3nw.en.vtt 4.21Кб
16. Deployment L2 C12 V1-JwPJMYRl3nw.mp4 7.25Мб
16. Deployment L2 C12 V1-JwPJMYRl3nw.zh-CN.vtt 3.47Кб
16. Exercise JavaScript.html 8.79Кб
16. Image Classification Steps.html 10.66Кб
16. Inheritance Gaussian Class-XS4LQn1VA3U.en.vtt 2.91Кб
16. Inheritance Gaussian Class-XS4LQn1VA3U.mp4 3.47Мб
16. Inheritance Gaussian Class-XS4LQn1VA3U.pt-BR.vtt 2.84Кб
16. Inheritance Gaussian Class-XS4LQn1VA3U.zh-CN.vtt 2.47Кб
16. Inheritance Probability Distribution.html 8.90Кб
16. In-line Comments.html 8.89Кб
16. L1C8 PCA Estimator V2-HGEqgi2MKcU.en.vtt 12.25Кб
16. L1C8 PCA Estimator V2-HGEqgi2MKcU.mp4 19.78Мб
16. L1C8 PCA Estimator V2-HGEqgi2MKcU.zh-CN.vtt 10.65Кб
16. Notebook De-noising Autoencoder.html 7.45Кб
16. PCA Estimator _ Training.html 8.67Кб
16. Solution Accounting for Class Imbalance.html 7.75Кб
16. Starring interesting repositories.html 9.46Кб
16. Starring interesting repositories-U3FUxkm1MxI.ar.vtt 542б
16. Starring interesting repositories-U3FUxkm1MxI.en.vtt 419б
16. Starring interesting repositories-U3FUxkm1MxI.ja-JP.vtt 492б
16. Starring interesting repositories-U3FUxkm1MxI.mp4 2.45Мб
16. Starring interesting repositories-U3FUxkm1MxI.pt-BR.vtt 460б
16. Starring interesting repositories-U3FUxkm1MxI.zh-CN.vtt 392б
16. Starring interesting repositories-ZwMY5rAAd7Q.ar.vtt 812б
16. Starring interesting repositories-ZwMY5rAAd7Q.en.vtt 634б
16. Starring interesting repositories-ZwMY5rAAd7Q.ja-JP.vtt 777б
16. Starring interesting repositories-ZwMY5rAAd7Q.mp4 1.47Мб
16. Starring interesting repositories-ZwMY5rAAd7Q.pt-BR.vtt 705б
16. Starring interesting repositories-ZwMY5rAAd7Q.zh-CN.vtt 556б
17. 05 Docstrings V1-_gapemxsRJY.en.vtt 1.71Кб
17. 05 Docstrings V1-_gapemxsRJY.mp4 1.66Мб
17. 05 Docstrings V1-_gapemxsRJY.pt-BR.vtt 1.99Кб
17. 05 Docstrings V1-_gapemxsRJY.zh-CN.vtt 1.50Кб
17. 18 Screencast Plotly V2-QsmOW1jNeio.en.vtt 11.64Кб
17. 18 Screencast Plotly V2-QsmOW1jNeio.mp4 14.79Мб
17. 18 Screencast Plotly V2-QsmOW1jNeio.pt-BR.vtt 10.82Кб
17. 18 Screencast Plotly V2-QsmOW1jNeio.zh-CN.vtt 10.41Кб
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.en.vtt 3.04Кб
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.mp4 4.24Мб
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.pt-BR.vtt 2.97Кб
17. ConNet 14 MLPvsCNN V1 V2-Q7CR3cCOtJQ.zh-CN.vtt 2.56Кб
17. Containers.html 11.33Кб
17. Demo Inheritance Probability Distributions.html 9.10Кб
17. Docstrings.html 9.99Кб
17. Exercise Define a Model w Specifications.html 10.08Кб
17. Exercise PCA Model Attributes _ Variance.html 8.73Кб
17. L1C9 PCA Attributes Variance V3-dumVafbS7pk.en.vtt 10.38Кб
17. L1C9 PCA Attributes Variance V3-dumVafbS7pk.mp4 16.38Мб
17. L1C9 PCA Attributes Variance V3-dumVafbS7pk.zh-CN.vtt 8.67Кб
17. MLPs vs CNNs.html 10.88Кб
17. Next Steps.html 8.08Кб
17. Plotly.html 11.30Кб
17. Summary.html 11.01Кб
18. Advanced OOP Topics.html 9.82Кб
18. Containers - Straight From the Experts.html 9.82Кб
18. Exercise Plotly.html 8.78Кб
18. Jesse Swidler Interview on Containers-XimuK3WHOH4.en.vtt 6.73Кб
18. Jesse Swidler Interview on Containers-XimuK3WHOH4.mp4 42.11Мб
18. Jesse Swidler Interview on Containers-XimuK3WHOH4.zh-CN.vtt 5.64Кб
18. L1C10 Variance Solution V3-C-BRBjxlUuE.en.vtt 4.44Кб
18. L1C10 Variance Solution V3-C-BRBjxlUuE.mp4 6.95Мб
18. L1C10 Variance Solution V3-C-BRBjxlUuE.zh-CN.vtt 3.62Кб
18. Local Connectivity.html 10.58Кб
18. Local Connectivity-z9wiDg0w-Dc.en.vtt 8.95Кб
18. Local Connectivity-z9wiDg0w-Dc.mp4 12.02Мб
18. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt 9.29Кб
18. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt 7.62Кб
18. One Solution Tuned and Balanced LinearLearner.html 10.89Кб
18. Project Documentation.html 9.23Кб
18. Solution Variance.html 8.63Кб
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.en.vtt 2.11Кб
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.mp4 2.95Мб
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.pt-BR.vtt 2.11Кб
19. 15 Filters And Convo RENDER V2-x_dhnhUzFNo.zh-CN.vtt 1.77Кб
19. Characteristics of Modeling _ Deployment.html 16.32Кб
19. Component Makeup.html 8.66Кб
19. Documentation.html 10.17Кб
19. Filters and the Convolutional Layer.html 10.67Кб
19. L1C11 Component Makeup V2-fiSr_Xjm3qI.en.vtt 5.93Кб
19. L1C11 Component Makeup V2-fiSr_Xjm3qI.mp4 8.27Мб
19. L1C11 Component Makeup V2-fiSr_Xjm3qI.zh-CN.vtt 4.88Кб
19. L2 03 Summary _ Improvements V2-VsjDz3agnhQ.en.vtt 1.46Кб
19. L2 03 Summary _ Improvements V2-VsjDz3agnhQ.mp4 5.14Мб
19. L2 03 Summary _ Improvements V2-VsjDz3agnhQ.zh-CN.vtt 1.28Кб
19. L4 The Back End V2-Esl0NL63S2c.en.vtt 2.38Кб
19. L4 The Back End V2-Esl0NL63S2c.mp4 5.29Мб
19. L4 The Back End V2-Esl0NL63S2c.pt-BR.vtt 2.73Кб
19. L4 The Back End V2-Esl0NL63S2c.zh-CN.vtt 2.13Кб
19. Organizing Code Into Modules-AARS10U5bbo.en.vtt 4.71Кб
19. Organizing Code Into Modules-AARS10U5bbo.mp4 4.49Мб
19. Organizing Code Into Modules-AARS10U5bbo.pt-BR.vtt 4.86Кб
19. Organizing Code Into Modules-AARS10U5bbo.zh-CN.vtt 4.36Кб
19. Organizing into Modules.html 10.55Кб
19. Summary and Improvements.html 7.58Кб
19. The Backend.html 11.05Кб
20. 22 Screencast Flask V2-i_U3O-7cymk.en.vtt 6.58Кб
20. 22 Screencast Flask V2-i_U3O-7cymk.mp4 7.11Мб
20. 22 Screencast Flask V2-i_U3O-7cymk.pt-BR.vtt 7.09Кб
20. 22 Screencast Flask V2-i_U3O-7cymk.zh-CN.vtt 6.11Кб
20. Characteristics of Modeling _ Deployment.html 13.35Кб
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.en.vtt 1.61Кб
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.mp4 3.50Мб
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.pt-BR.vtt 1.63Кб
20. ConNet 16 FIlters _ Edges V2-hfqNqcEU6uI.zh-CN.vtt 1.38Кб
20. Demo Modularized Code.html 9.04Кб
20. Exercise PCA Deployment _ Data Transformation.html 9.00Кб
20. Filters _ Edges.html 11.16Кб
20. Flask.html 14.40Кб
20. L1C12 PCA Deployment V1-qsnpHHuwbbA.en.vtt 4.89Кб
20. L1C12 PCA Deployment V1-qsnpHHuwbbA.mp4 8.02Мб
20. L1C12 PCA Deployment V1-qsnpHHuwbbA.zh-CN.vtt 4.31Кб
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.en.vtt 867б
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.mp4 2.94Мб
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.pt-BR.vtt 995б
20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.zh-CN.vtt 738б
20. Version Control in Data Science.html 8.42Кб
21. 15 Making a Package v2-Hj2OBr1CGZM.en.vtt 7.52Кб
21. 15 Making a Package v2-Hj2OBr1CGZM.mp4 7.53Мб
21. 15 Making a Package v2-Hj2OBr1CGZM.pt-BR.vtt 7.77Кб
21. 15 Making a Package v2-Hj2OBr1CGZM.zh-CN.vtt 6.84Кб
21. Comparing Cloud Providers.html 26.79Кб
21. Exercise Flask.html 8.78Кб
21. Frequency in Images.html 12.82Кб
21. L1C13 Creating New Data Solution V4-4l2UHyyVV7Y.en.vtt 6.68Кб
21. L1C13 Creating New Data Solution V4-4l2UHyyVV7Y.mp4 11.83Мб
21. L1C13 Creating New Data Solution V4-4l2UHyyVV7Y.zh-CN.vtt 5.61Кб
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.en.vtt 3.69Кб
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.mp4 3.93Мб
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.pt-BR.vtt 4.30Кб
21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.zh-CN.vtt 3.13Кб
21. Making a Package.html 11.42Кб
21. Scenario #1.html 12.26Кб
21. Solution Creating Transformed Data.html 8.75Кб
22. Comparing Cloud Providers.html 13.59Кб
22. Exercise K-means Estimator _ Selecting K.html 13.93Кб
22. Flask + Pandas.html 10.65Кб
22. Flask and Pandas-L_M_8UVY42k.en.vtt 4.38Кб
22. Flask and Pandas-L_M_8UVY42k.mp4 6.20Мб
22. Flask and Pandas-L_M_8UVY42k.pt-BR.vtt 4.81Кб
22. Flask and Pandas-L_M_8UVY42k.zh-CN.vtt 3.91Кб
22. High-pass Filters.html 11.77Кб
22. High-pass Filters-OpcFn_H2V-Q.en.vtt 7.56Кб
22. High-pass Filters-OpcFn_H2V-Q.mp4 8.25Мб
22. High-pass Filters-OpcFn_H2V-Q.pt-BR.vtt 8.22Кб
22. High-pass Filters-OpcFn_H2V-Q.zh-CN.vtt 6.57Кб
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.en.vtt 1.71Кб
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.mp4 1.90Мб
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.pt-BR.vtt 1.99Кб
22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.zh-CN.vtt 1.45Кб
22. Scenario #2.html 9.78Кб
22. Virtual Environments.html 14.83Кб
22. Virtual Environments-f7rzxUiHOJ0.en.vtt 3.25Кб
22. Virtual Environments-f7rzxUiHOJ0.mp4 2.99Мб
22. Virtual Environments-f7rzxUiHOJ0.pt-BR.vtt 3.33Кб
22. Virtual Environments-f7rzxUiHOJ0.zh-CN.vtt 3.04Кб
23. Closing Remarks On Deployment-fXl_MCYzcOU.en.vtt 1.92Кб
23. Closing Remarks On Deployment-fXl_MCYzcOU.mp4 4.52Мб
23. Closing Remarks On Deployment-fXl_MCYzcOU.zh-CN.vtt 1.65Кб
23. Closing Statements.html 8.16Кб
23. Example Flask + Pandas.html 8.82Кб
23. Exercise K-means Predictions (clusters).html 9.74Кб
23. Exercise Making a Package and Pip Installing.html 9.10Кб
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.en.vtt 1.57Кб
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.mp4 3.04Мб
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.pt-BR.vtt 1.87Кб
23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.zh-CN.vtt 1.37Кб
23. Quiz Kernels.html 11.68Кб
23. Scenario #3.html 12.01Кб
24. Binomial Class.html 9.50Кб
24. Binomial Class-O-4qRh74rkI.en.vtt 1.27Кб
24. Binomial Class-O-4qRh74rkI.mp4 3.44Мб
24. Binomial Class-O-4qRh74rkI.pt-BR.vtt 1.38Кб
24. Binomial Class-O-4qRh74rkI.zh-CN.vtt 1.11Кб
24. Binomial Class-xTamXY6Z9Kg.en.vtt 3.35Кб
24. Binomial Class-xTamXY6Z9Kg.mp4 4.33Мб
24. Binomial Class-xTamXY6Z9Kg.pt-BR.vtt 3.30Кб
24. Binomial Class-xTamXY6Z9Kg.zh-CN.vtt 3.05Кб
24. Flask+Plotly+Pandas Part 1.html 11.75Кб
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.en.vtt 4.66Кб
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.mp4 6.68Мб
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.pt-BR.vtt 5.01Кб
24. Flask Pandas Plotly Part 1-xg7P8MnItdI.zh-CN.vtt 4.16Кб
24. L1C15 Kmeans Solutioni V2-0xx2p2vnCg0.en.vtt 8.39Кб
24. L1C15 Kmeans Solutioni V2-0xx2p2vnCg0.mp4 13.02Мб
24. L1C15 Kmeans Solutioni V2-0xx2p2vnCg0.zh-CN.vtt 7.09Кб
24. Model Versioning.html 8.55Кб
24. OpenCV _ Creating Custom Filters.html 12.95Кб
24. Solution K-means Predictor.html 8.67Кб
24. Summary.html 8.88Кб
25. [Optional] Cloud Computing Defined.html 36.25Кб
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.en.vtt 6.91Кб
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.mp4 7.90Мб
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.pt-BR.vtt 7.07Кб
25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.zh-CN.vtt 6.29Кб
25. Conclusion.html 7.91Кб
25. Exercise Binomial Class.html 9.05Кб
25. Exercise Get the Model Attributes.html 10.55Кб
25. Flask+Plotly+Pandas Part 2.html 10.42Кб
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.en.vtt 816б
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.mp4 2.84Мб
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.pt-BR.vtt 984б
25. L2 21 Conclusion V1 V1-anPnokWZOZQ.zh-CN.vtt 739б
25. Notebook Finding Edges.html 10.98Кб
26. [Optional] Cloud Computing Explained.html 46.41Кб
26. Convolutional Layer.html 13.05Кб
26. Flask+Plotly+Pandas Part 3.html 9.91Кб
26. Flask Pandas Plotly Part3-e8owK5zk-g8.en.vtt 1.83Кб
26. Flask Pandas Plotly Part3-e8owK5zk-g8.mp4 2.95Мб
26. Flask Pandas Plotly Part3-e8owK5zk-g8.pt-BR.vtt 1.93Кб
26. Flask Pandas Plotly Part3-e8owK5zk-g8.zh-CN.vtt 1.74Кб
26. L1C17 Model Attributes Conclusions V2-VS-hVhsCBPw.en.vtt 7.43Кб
26. L1C17 Model Attributes Conclusions V2-VS-hVhsCBPw.mp4 18.66Мб
26. L1C17 Model Attributes Conclusions V2-VS-hVhsCBPw.zh-CN.vtt 6.43Кб
26. Scikit-learn Source Code.html 9.95Кб
26. Scikitlearn Source Code-4_qkqMsbthg.en.vtt 5.56Кб
26. Scikitlearn Source Code-4_qkqMsbthg.mp4 9.62Мб
26. Scikitlearn Source Code-4_qkqMsbthg.pt-BR.vtt 5.66Кб
26. Scikitlearn Source Code-4_qkqMsbthg.zh-CN.vtt 5.09Кб
26. Solution Model Attributes.html 8.71Кб
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.en.vtt 9.61Кб
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.mp4 16.29Мб
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.pt-BR.vtt 9.98Кб
27. 20 Putting Code On PyPi V1-4uosDOKn5LI.zh-CN.vtt 8.81Кб
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.en.vtt 10.08Кб
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.mp4 17.06Мб
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.pt-BR.vtt 10.17Кб
27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.zh-CN.vtt 8.84Кб
27. Camadas convolucionais-RnM1D-XI--8.en.vtt 9.99Кб
27. Camadas convolucionais-RnM1D-XI--8.mp4 17.05Мб
27. Camadas convolucionais-RnM1D-XI--8.pt-BR.vtt 11.00Кб
27. Camadas convolucionais-RnM1D-XI--8.zh-CN.vtt 8.71Кб
27. Clean Up All Resources.html 12.82Кб
27. Convolutional Layers (Part 2).html 11.44Кб
27. Flask+Plotly+Pandas Part 4.html 11.19Кб
27. Putting Code on PyPi.html 12.18Кб
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.en.vtt 3.61Кб
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.mp4 6.09Мб
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.pt-BR.vtt 3.86Кб
28. 17 Stride And Padding RENDER V1-GmStpNi8jBI.zh-CN.vtt 2.97Кб
28. AWS Workflow _ Summary.html 8.61Кб
28. Example Flask + Plotly + Pandas.html 8.85Кб
28. Exercise Upload to PyPi.html 9.04Кб
28. L1 06 AWS Workflow _ Summary V1 RENDER V3-vMLN832942E.en.vtt 3.49Кб
28. L1 06 AWS Workflow _ Summary V1 RENDER V3-vMLN832942E.mp4 6.92Мб
28. L1 06 AWS Workflow _ Summary V1 RENDER V3-vMLN832942E.zh-CN.vtt 3.03Кб
28. Stride and Padding.html 10.62Кб
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.en.vtt 2.90Кб
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.mp4 2.98Мб
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.pt-BR.vtt 3.20Кб
29. 18 Pooling RENDER V1-_Ok5xZwOtrk.zh-CN.vtt 2.35Кб
29. Exercise Flask + Plotly + Pandas.html 8.83Кб
29. L3 21 Outro v1 V2-DStO1hBKtHQ.en.vtt 2.13Кб
29. L3 21 Outro v1 V2-DStO1hBKtHQ.mp4 6.15Мб
29. L3 21 Outro v1 V2-DStO1hBKtHQ.pt-BR.vtt 2.32Кб
29. L3 21 Outro v1 V2-DStO1hBKtHQ.zh-CN.vtt 1.95Кб
29. Lesson Summary.html 9.20Кб
29. Pooling Layers.html 12.63Кб
3. (FTUApps.com) Download Cracked Developers Applications For Free.url 239б
30. Deployment.html 18.13Кб
30. Deployment-YPfNzpnm_Rk.en.vtt 13.81Кб
30. Deployment-YPfNzpnm_Rk.mp4 19.37Мб
30. Deployment-YPfNzpnm_Rk.pt-BR.vtt 13.64Кб
30. Deployment-YPfNzpnm_Rk.zh-CN.vtt 12.59Кб
30. Notebook Layer Visualization.html 10.99Кб
31. Capsule Networks.html 14.67Кб
31. Exercise Deployment.html 8.80Кб
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.en.vtt 4.23Кб
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.mp4 4.90Мб
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.pt-BR.vtt 4.41Кб
32. ConNet 20 Increasing Depth V2 RENDERv1 1 V2-YKif1KNpWeE.zh-CN.vtt 3.55Кб
32. Increasing Depth.html 10.69Кб
32. L4 Outro V2-8MyuJx5yu38.en.vtt 1.36Кб
32. L4 Outro V2-8MyuJx5yu38.mp4 3.09Мб
32. L4 Outro V2-8MyuJx5yu38.pt-BR.vtt 1.41Кб
32. L4 Outro V2-8MyuJx5yu38.zh-CN.vtt 1.18Кб
32. Lesson Summary.html 8.67Кб
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.en.vtt 4.74Кб
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.mp4 5.75Мб
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.pt-BR.vtt 5.07Кб
33. 21 CNNs For Image Classification RENDER V2-smaw5GqRaoY.zh-CN.vtt 3.90Кб
33. CNNs for Image Classification.html 16.01Кб
34. Convolutional Layers in PyTorch.html 22.32Кб
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.en.vtt 3.87Кб
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.mp4 5.37Мб
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.pt-BR.vtt 3.90Кб
35. ConNet 22 Feature Vector RENDER 1 V2-g6QuiVno8zI.zh-CN.vtt 3.28Кб
35. Feature Vector.html 10.65Кб
36. Pre-Notebook CNN Classification.html 12.31Кб
37. Notebook CNNs for CIFAR Image Classification.html 11.05Кб
38. 23 Cifar Class V1-FF_EmZ2sf2w.en.vtt 8.39Кб
38. 23 Cifar Class V1-FF_EmZ2sf2w.mp4 12.83Мб
38. 23 Cifar Class V1-FF_EmZ2sf2w.pt-BR.vtt 8.62Кб
38. 23 Cifar Class V1-FF_EmZ2sf2w.zh-CN.vtt 7.07Кб
38. CIFAR Classification Example.html 11.57Кб
39. 24 CNNs PyTorch V2-GNxzWfiz3do.en.vtt 8.26Кб
39. 24 CNNs PyTorch V2-GNxzWfiz3do.mp4 12.60Мб
39. 24 CNNs PyTorch V2-GNxzWfiz3do.pt-BR.vtt 8.11Кб
39. 24 CNNs PyTorch V2-GNxzWfiz3do.zh-CN.vtt 6.90Кб
39. CNNs in PyTorch.html 10.99Кб
40. Image Augmentation.html 10.62Кб
40. Image Augmentation In Keras-zQnx2jZmjTA.en.vtt 4.56Кб
40. Image Augmentation In Keras-zQnx2jZmjTA.mp4 4.93Мб
40. Image Augmentation In Keras-zQnx2jZmjTA.pt-BR.vtt 4.53Кб
40. Image Augmentation In Keras-zQnx2jZmjTA.zh-CN.vtt 3.87Кб
41. 26 Augmentation V1-J_gjHVt9pVw.en.vtt 3.42Кб
41. 26 Augmentation V1-J_gjHVt9pVw.mp4 7.62Мб
41. 26 Augmentation V1-J_gjHVt9pVw.pt-BR.vtt 3.26Кб
41. 26 Augmentation V1-J_gjHVt9pVw.zh-CN.vtt 2.89Кб
41. Augmentation Using Transformations.html 11.08Кб
42. Groundbreaking CNN Architectures.html 12.09Кб
42. Groundbreaking CNN Architectures-GdYOqihgb2k.en.vtt 3.59Кб
42. Groundbreaking CNN Architectures-GdYOqihgb2k.mp4 7.32Мб
42. Groundbreaking CNN Architectures-GdYOqihgb2k.pt-BR.vtt 3.86Кб
42. Groundbreaking CNN Architectures-GdYOqihgb2k.zh-CN.vtt 3.17Кб
43. Visualizando CNNs-mnqS_EhEZVg.en.vtt 3.87Кб
43. Visualizando CNNs-mnqS_EhEZVg.mp4 9.20Мб
43. Visualizando CNNs-mnqS_EhEZVg.pt-BR.vtt 3.83Кб
43. Visualizando CNNs-mnqS_EhEZVg.zh-CN.vtt 3.33Кб
43. Visualizing CNNs (Part 1).html 13.15Кб
44. Visualizing CNNs (Part 2).html 17.47Кб
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.en.vtt 2.03Кб
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.mp4 3.66Мб
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.pt-BR.vtt 2.16Кб
45. ConNet 27 Summary Of CNNs V2 RENDER V3-Te9QCvhx6N8.zh-CN.vtt 1.72Кб
45. Summary of CNNs.html 10.66Кб
46. Introduction to GPU Workspaces.html 21.19Кб
47. Workspace Playground.html 10.71Кб
48. GPU Workspace Playground.html 10.86Кб
assets.zip 1.43Мб
How you can help our Group!.txt 208б
img.zip 7.35Мб
img.zip 2.22Мб
img.zip 330.99Кб
img.zip 12.68Мб
img.zip 1.26Мб
img.zip 366.17Кб
img.zip 661.96Кб
img.zip 1.91Мб
img.zip 65.80Кб
img.zip 2.55Мб
img.zip 2.34Мб
img.zip 24.28Кб
img.zip 2.30Мб
img.zip 3.39Мб
img.zip 122.80Кб
img.zip 4.51Мб
img.zip 83.81Кб
img.zip 560.72Кб
img.zip 12.05Мб
img.zip 678.53Кб
img.zip 2.74Мб
img.zip 3.26Мб
img.zip 803.69Кб
img.zip 1.66Мб
img.zip 2.10Мб
img.zip 4.53Мб
img.zip 11.02Мб
img.zip 499.72Кб
index.html 4.68Кб
index.html 4.15Кб
index.html 4.32Кб
index.html 6.06Кб
index.html 5.15Кб
index.html 6.70Кб
index.html 4.32Кб
index.html 6.36Кб
index.html 5.91Кб
index.html 5.24Кб
index.html 5.22Кб
index.html 5.11Кб
index.html 4.66Кб
index.html 6.78Кб
index.html 6.01Кб
index.html 4.47Кб
index.html 5.29Кб
index.html 5.43Кб
index.html 4.80Кб
index.html 5.91Кб
index.html 5.44Кб
index.html 5.10Кб
index.html 4.34Кб
index.html 4.32Кб
index.html 4.09Кб
index.html 4.84Кб
index.html 5.04Кб
index.html 5.22Кб
index.html 8.14Кб
index.html 4.29Кб
index.html 4.52Кб
index.html 4.71Кб
index.html 4.85Кб
index.html 5.45Кб
index.html 6.34Кб
index.html 4.85Кб
index.html 4.51Кб
index.html 4.39Кб
index.html 4.63Кб
index.html 4.46Кб
index.html 4.48Кб
index.html 4.43Кб
index.html 127.95Кб
media.zip 113.31Кб
Project Description - Capstone Project.html 10.34Кб
Project Description - Capstone Proposal.html 9.26Кб
Project Description - Deploy a Sentiment Analysis Model.html 8.02Кб
Project Description - Improve Your LinkedIn Profile.html 8.14Кб
Project Description - Optimize Your GitHub Profile.html 10.03Кб
Project Description - Plagiarism Detector.html 9.00Кб
Project Rubric - Capstone Project.html 10.29Кб
Project Rubric - Capstone Proposal.html 8.94Кб
Project Rubric - Deploy a Sentiment Analysis Model.html 11.64Кб
Project Rubric - Improve Your LinkedIn Profile.html 16.33Кб
Project Rubric - Optimize Your GitHub Profile.html 9.89Кб
Project Rubric - Plagiarism Detector.html 14.97Кб
Статистика распространения по странам
Нидерланды (NL) 4
Индия (IN) 4
Франция (FR) 3
Тайланд (TH) 2
Канада (CA) 2
Камерун (CM) 2
Великобритания (GB) 1
Румыния (RO) 1
Люксембург (LU) 1
Кения (KE) 1
Малайзия (MY) 1
Дания (DK) 1
Россия (RU) 1
Пакистан (PK) 1
Всего 25
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент