Общая информация
Название [FreeCourseSite.com] Udemy - The Data Science Course 2020 Complete Data Science Bootcamp
Тип
Размер 15.49Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.ME].url 122б
[FCS Forum].url 133б
[FreeCourseSite.com].url 127б
1.1 1.04. Real-life example.csv 219.83Кб
1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx 146.51Кб
1.1 3.17. Practical example. Confidence intervals_lesson.xlsx 1.74Мб
1.1 4.10.Hypothesis-testing-section-practical-example.xlsx 51.90Кб
1.1 Absenteeism_predictions.csv 2.10Кб
1.1 Absenteeism_preprocessed.csv 29.13Кб
1.1 Additional-Python-Tools-Solutions.ipynb 25.49Кб
1.1 Arithmetic Operators - Exercise_Py3.ipynb 2.62Кб
1.1 Audiobooks_data.csv 710.77Кб
1.1 Audiobooks_data.csv 710.77Кб
1.1 Comparison Operators - Solution_Py3.ipynb 2.41Кб
1.1 Course_Notes_Cluster_Analysis.pdf 208.65Кб
1.1 Course_Notes_Logistic_Regression.pdf 335.17Кб
1.1 Course notes_descriptive_statistics.pdf 482.21Кб
1.1 Course notes_hypothesis_testing.pdf 656.44Кб
1.1 Course notes_inferential statistics.pdf 382.32Кб
1.1 Course notes_regression_analysis.pdf 312.18Кб
1.1 Course notes_regression_analysis.pdf 312.18Кб
1.1 Course Notes - Basic Probability.pdf 371.05Кб
1.1 Course Notes - Bayesian Inference.pdf 386.01Кб
1.1 Course Notes - Combinatorics.pdf 226.12Кб
1.1 Course Notes - Probability Distributions.pdf 463.95Кб
1.1 Course Notes - Section 2.pdf 578.08Кб
1.1 Course Notes - Section 6.pdf 936.42Кб
1.1 data_preprocessing_homework.pdf 134.47Кб
1.1 Defining a Function in Python - Lecture_Py3.ipynb 868б
1.1 For Loops - Solution_Py3.ipynb 1.80Кб
1.1 Introduction to the If Statement - Lecture_Py3.ipynb 1.14Кб
1.1 Lists - Solution_Py3.ipynb 3.18Кб
1.1 Minimal_example_Part_1.ipynb 1.19Кб
1.1 model.original 1.01Кб
1.1 Probability in Finance Homework.pdf 110.68Кб
1.1 Shortcuts-for-Jupyter.pdf 619.17Кб
1.1 Statistics Glossary.xlsx 20.26Кб
1.1 Variables - Lecture_Py3.ipynb 3.61Кб
1.2 Absenteeism_data.csv 32.05Кб
1.2 Additional-Python-Tools-Exercises.ipynb 11.37Кб
1.2 Arithmetic Operators - Lecture_Py3.ipynb 3.53Кб
1.2 Comparison Operators - Lecture_Py3.ipynb 2.53Кб
1.2 Course notes_descriptive_statistics.pdf 482.21Кб
1.2 For Loops - Exercise_Py3.ipynb 1.28Кб
1.2 Glossary.xlsx 19.97Кб
1.2 Introduction to the If Statement - Solution_Py3.ipynb 2.19Кб
1.2 Lists - Exercise_Py3.ipynb 2.14Кб
1.2 Probability in Finance Solutions.pdf 184.46Кб
1.2 scaler.original 1.86Кб
1.2 Shortcuts-for-Jupyter.pdf 619.17Кб
1.2 sklearn - Linear Regression - Practical Example (Part 1)_with_comments.ipynb 171.38Кб
1.2 Variables - Exercise_Py3.ipynb 2.23Кб
1.3 absenteeism_module.py 6.62Кб
1.3 Additional-Python-Tools-Lectures.ipynb 13.47Кб
1.3 Arithmetic Operators - Solution_Py3.ipynb 4.24Кб
1.3 Comparison Operators - Exercise_Py3.ipynb 1.61Кб
1.3 df_preprocessed.csv 29.11Кб
1.3 For Loops - Lecture_Py3.ipynb 1.26Кб
1.3 Introduction to the If Statement - Exercise_Py3.ipynb 1.53Кб
1.3 Lists - Lecture_Py3.ipynb 2.70Кб
1.3 Python Introduction - Course Notes.pdf 2.04Мб
1.3 sklearn - Linear Regression - Practical Example (Part 1).ipynb 166.91Кб
1.4 Absenteeism Exercise - Integration.ipynb 62.35Кб
1.4 Variables - Solution_Py3.ipynb 3.79Кб
1.5 Absenteeism_new_data.csv 1.87Кб
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 126.87Мб
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.srt 8.99Кб
1. A Practical Example What You Will Learn in This Course.mp4 49.03Мб
1. A Practical Example What You Will Learn in This Course.srt 6.37Кб
1. Are You Sure You're All Set.html 519б
1. Basic NN Example (Part 1).mp4 20.60Мб
1. Basic NN Example (Part 1).srt 4.46Кб
1. Bonus Lecture Next Steps.html 2.53Кб
1. Business Case Exploring the Dataset and Identifying Predictors.mp4 66.27Мб
1. Business Case Exploring the Dataset and Identifying Predictors.srt 10.66Кб
1. Business Case Getting Acquainted with the Dataset.mp4 87.65Мб
1. Business Case Getting Acquainted with the Dataset.srt 10.78Кб
1. Comparison Operators.mp4 10.17Мб
1. Comparison Operators.srt 2.47Кб
1. Data Science and Business Buzzwords Why are there so Many.mp4 81.41Мб
1. Data Science and Business Buzzwords Why are there so Many.srt 6.62Кб
1. Debunking Common Misconceptions.mp4 72.85Мб
1. Debunking Common Misconceptions.srt 5.29Кб
1. Defining a Function in Python.mp4 6.30Мб
1. Defining a Function in Python.srt 2.42Кб
1. EXERCISE - Age vs Probability.html 385б
1. Exploring the Problem with a Machine Learning Mindset.mp4 27.55Мб
1. Exploring the Problem with a Machine Learning Mindset.srt 4.58Кб
1. Finding the Job - What to Expect and What to Look for.mp4 54.38Мб
1. Finding the Job - What to Expect and What to Look for.srt 4.49Кб
1. For Loops.mp4 23.60Мб
1. For Loops.srt 6.58Кб
1. Fundamentals of Combinatorics.mp4 16.21Мб
1. Fundamentals of Combinatorics.srt 1.30Кб
1. Fundamentals of Probability Distributions.mp4 73.40Мб
1. Fundamentals of Probability Distributions.srt 7.54Кб
1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 52.31Мб
1. Game Plan for this Python, SQL, and Tableau Business Exercise.srt 5.46Кб
1. How to Install TensorFlow 2.0.mp4 38.76Мб
1. How to Install TensorFlow 2.0.srt 6.38Кб
1. Introduction.mp4 15.50Мб
1. Introduction.srt 1.63Кб
1. Introduction to Cluster Analysis.mp4 53.43Мб
1. Introduction to Cluster Analysis.srt 4.80Кб
1. Introduction to Logistic Regression.mp4 27.07Мб
1. Introduction to Logistic Regression.srt 1.61Кб
1. Introduction to Neural Networks.mp4 42.93Мб
1. Introduction to Neural Networks.srt 42.94Мб
1. Introduction to Programming.mp4 58.54Мб
1. Introduction to Programming.srt 6.90Кб
1. Introduction to Regression Analysis.mp4 17.32Мб
1. Introduction to Regression Analysis.srt 2.21Кб
1. K-Means Clustering.mp4 27.29Мб
1. K-Means Clustering.srt 6.67Кб
1. Lists.mp4 37.79Мб
1. Lists.srt 9.83Кб
1. MNIST The Dataset.mp4 13.39Мб
1. MNIST The Dataset.srt 3.58Кб
1. MNIST What is the MNIST Dataset.mp4 17.82Мб
1. MNIST What is the MNIST Dataset.srt 3.49Кб
1. Multiple Linear Regression.mp4 21.53Мб
1. Multiple Linear Regression.srt 3.35Кб
1. Necessary Programming Languages and Software Used in Data Science.mp4 103.52Мб
1. Necessary Programming Languages and Software Used in Data Science.srt 7.29Кб
1. Null vs Alternative Hypothesis.mp4 92.04Мб
1. Null vs Alternative Hypothesis.srt 6.97Кб
1. Object Oriented Programming.mp4 33.59Мб
1. Object Oriented Programming.srt 6.10Кб
1. Population and Sample.mp4 58.11Мб
1. Population and Sample.srt 5.47Кб
1. Practical Example Descriptive Statistics.mp4 160.46Мб
1. Practical Example Descriptive Statistics.srt 20.78Кб
1. Practical Example Hypothesis Testing.mp4 69.48Мб
1. Practical Example Hypothesis Testing.srt 8.49Кб
1. Practical Example Inferential Statistics.mp4 102.66Мб
1. Practical Example Inferential Statistics.srt 13.64Кб
1. Practical Example Linear Regression (Part 1).mp4 97.08Мб
1. Practical Example Linear Regression (Part 1).srt 14.86Кб
1. Preprocessing Introduction.mp4 27.78Мб
1. Preprocessing Introduction.srt 3.87Кб
1. Probability in Finance.mp4 99.06Мб
1. Probability in Finance.srt 9.83Кб
1. READ ME!!!!.html 564б
1. Sets and Events.mp4 53.46Мб
1. Sets and Events.srt 5.06Кб
1. Stochastic Gradient Descent.mp4 28.68Мб
1. Stochastic Gradient Descent.srt 4.81Кб
1. Summary on What You've Learned.mp4 39.75Мб
1. Summary on What You've Learned.srt 5.21Кб
1. Techniques for Working with Traditional Data.mp4 138.30Мб
1. Techniques for Working with Traditional Data.srt 10.62Кб
1. The Basic Probability Formula.mp4 85.91Мб
1. The Basic Probability Formula.srt 8.90Кб
1. The IF Statement.mp4 10.81Мб
1. The IF Statement.srt 3.53Кб
1. The Linear Regression Model.mp4 57.37Мб
1. The Linear Regression Model.srt 7.06Кб
1. The Reason Behind These Disciplines.mp4 81.19Мб
1. The Reason Behind These Disciplines.srt 6.50Кб
1. Types of Clustering.mp4 44.58Мб
1. Types of Clustering.srt 4.66Кб
1. Types of Data.mp4 72.52Мб
1. Types of Data.srt 5.95Кб
1. Using Arithmetic Operators in Python.mp4 18.93Мб
1. Using Arithmetic Operators in Python.srt 4.11Кб
1. Using the .format() Method.mp4 47.64Мб
1. Using the .format() Method.srt 12.34Кб
1. Variables.mp4 14.09Мб
1. Variables.srt 4.53Кб
1. What are Confidence Intervals.mp4 49.99Мб
1. What are Confidence Intervals.srt 3.26Кб
1. What are Data, Servers, Clients, Requests, and Responses.mp4 69.03Мб
1. What are Data, Servers, Clients, Requests, and Responses.srt 5.93Кб
1. What is a Layer.mp4 12.51Мб
1. What is a Layer.srt 2.39Кб
1. What is a Matrix.mp4 33.59Мб
1. What is a Matrix.srt 4.34Кб
1. What is Initialization.mp4 21.76Мб
1. What is Initialization.srt 3.50Кб
1. What is Overfitting.mp4 31.08Мб
1. What is Overfitting.srt 5.58Кб
1. What is sklearn and How is it Different from Other Packages.mp4 27.26Мб
1. What is sklearn and How is it Different from Other Packages.srt 3.42Кб
1. What to Expect from the Following Sections.html 2.48Кб
1. What to Expect from this Part.mp4 31.10Мб
1. What to Expect from this Part.srt 4.63Кб
10.1 1.02. Multiple linear regression.csv 1.07Кб
10.1 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx 13.15Кб
10.1 Adding and subtracting matrices.ipynb 3.22Кб
10.1 Binary predictors.ipynb 2.41Кб
10.1 Indexing Elements - Exercise_Py3.ipynb 1.35Кб
10.1 Online p-value calculator.pdf 1.15Мб
10.1 TensorFlow_Minimal_Example_Exercise_1_Solution.ipynb 23.63Кб
10.1 TensorFlow_MNIST_Exercises_All.ipynb 15.47Кб
10.1 TensorFlow_MNIST_Part6_with_comments.ipynb 12.54Кб
10.2 2.02. Binary predictors.csv 2.56Кб
10.2 Indexing Elements - Lecture_Py3.ipynb 1.32Кб
10.2 sklearn - Feature Selection with F-regression.ipynb 10.44Кб
10.2 TensorFlow_Minimal_Example_Exercise_2_3_Solution.ipynb 49.96Кб
10.3 Indexing Elements - Solution_Py3.ipynb 2.17Кб
10.3 sklearn - Feature Selection with F-regression_with_comments.ipynb 12.99Кб
10.3 TensorFlow_Minimal_Example_All_Exercises.ipynb 13.97Кб
10.4 TensorFlow_Minimal_Example_Exercise_4_Solution.ipynb 26.98Кб
10.5 TensorFlow_Minimal_Example_Exercise_3_Solution.ipynb 26.71Кб
10.6 TensorFlow_Minimal_Example_Exercise_2_2_Solution.ipynb 25.51Кб
10.7 TensorFlow_Minimal_Example_Exercise_2_1_Solution.ipynb 25.54Кб
10.8 TensorFlow_Minimal_Example_Exercise_2_4_Solution.ipynb 21.75Кб
10. A1 Linearity.html 165б
10. A Breakdown of our Data Science Infographic.html 165б
10. Addition and Subtraction of Matrices.mp4 32.62Мб
10. Addition and Subtraction of Matrices.srt 4.04Кб
10. Analyzing the Reasons for Absence.mp4 40.58Мб
10. Analyzing the Reasons for Absence.srt 5.85Кб
10. Basic NN Example with TF Exercises.html 1.59Кб
10. Binary Predictors in a Logistic Regression.mp4 38.43Мб
10. Binary Predictors in a Logistic Regression.srt 5.41Кб
10. Business Case Testing the Model.mp4 11.20Мб
10. Business Case Testing the Model.srt 2.71Кб
10. Central Limit Theorem.html 165б
10. Discrete Distributions The Bernoulli Distribution.html 165б
10. Feature Selection (F-regression).mp4 29.51Мб
10. Feature Selection (F-regression).srt 6.67Кб
10. Indexing Elements.mp4 5.93Мб
10. Indexing Elements.srt 1.70Кб
10. Interpreting the Coefficients of the Logistic Regression.mp4 40.40Мб
10. Interpreting the Coefficients of the Logistic Regression.srt 7.25Кб
10. Jupyter's Interface.html 165б
10. Margin of Error.mp4 47.24Мб
10. Margin of Error.srt 6.15Кб
10. MNIST Exercises.html 2.13Кб
10. MNIST Learning.mp4 40.96Мб
10. MNIST Learning.srt 7.94Кб
10. Mutually Exclusive Sets.html 165б
10. Numerical Variables Exercise.html 81б
10. p-value.mp4 55.87Мб
10. p-value.srt 5.03Кб
10. Relationship between Clustering and Regression.mp4 9.93Мб
10. Relationship between Clustering and Regression.srt 2.18Кб
10. Setting an Early Stopping Mechanism - Exercise.html 192б
10. Software Integration - Explained.html 165б
10. Solving Variations without Repetition.html 165б
10. Techniques for Working with Traditional Methods.mp4 111.65Мб
10. Techniques for Working with Traditional Methods.srt 10.98Кб
10. The Linear Model with Multiple Inputs.html 165б
10. Using Seaborn for Graphs.mp4 12.24Мб
10. Using Seaborn for Graphs.srt 1.48Кб
11.10 8. TensorFlow_MNIST_Learning_rate_Part_1_Solution.ipynb 20.58Кб
11.10 9. TensorFlow_MNIST_Learning_rate_Part_2_Solution.ipynb 15.21Кб
11.11 3. TensorFlow_MNIST_Width_and_Depth_Solution.ipynb 15.30Кб
11.11 7. TensorFlow_MNIST_Batch_size_Part_2_Solution.ipynb 14.16Кб
11.1 2.5. The Histogram_lesson.xlsx 18.63Кб
11.1 6. TensorFlow_MNIST_Batch_size_Part_1_Solution.ipynb 15.12Кб
11.1 8. TensorFlow_MNIST_Learning_rate_Part_1_Solution.ipynb 14.07Кб
11.1 Bank_data.csv 19.55Кб
11.1 Combinations With Repetition.pdf 207.41Кб
11.1 Logistic Regression prior to Backward Elimination.html 226б
11.1 Market segmentation example_with_comments.ipynb 5.90Кб
11.1 sklearn - How to properly include p-values.ipynb 12.71Кб
11.1 TensorFlow_Audiobooks_Machine_learning_Homework.ipynb 14.40Кб
11.1 TensorFlow_Audiobooks_Machine_Learning_with_comments.ipynb 11.95Кб
11.2 1.02. Multiple linear regression.csv 1.07Кб
11.2 1. TensorFlow_MNIST_Width_Solution.ipynb 14.84Кб
11.2 2. TensorFlow_MNIST_Depth_Solution.ipynb 14.87Кб
11.2 3.12. Example.csv 283б
11.2 Binary Predictors in a Logistic Regression - Exercise.ipynb 2.54Кб
11.2 TensorFlow_Audiobooks_Preprocessing_with_comments.ipynb 11.19Кб
11.3 0. TensorFlow_MNIST_take_note_of_time_Solution.ipynb 14.00Кб
11.3 5. TensorFlow_MNIST_Activation_functions_Part_2_Solution.ipynb 14.74Кб
11.3 Audiobooks_data.csv 710.77Кб
11.3 Binary Predictors in a Logistic Regression - Solution.ipynb 4.51Кб
11.3 Market segmentation example.ipynb 3.80Кб
11.4 5. TensorFlow_MNIST_Activation_functions_Part_2_Solution.ipynb 13.93Кб
11.4 9. TensorFlow_MNIST_Learning_rate_Part_2_Solution.ipynb 15.80Кб
11.5 6. TensorFlow_MNIST_Batch_size_Part_1_Solution.ipynb 14.26Кб
11.5 TensorFlow_MNIST_around_98_percent_accuracy.ipynb 15.02Кб
11.6 4. TensorFlow_MNIST_Activation_functions_Part_1_Solution.ipynb 14.35Кб
11.6 7. TensorFlow_MNIST_Batch_size_Part_2_Solution.ipynb 15.18Кб
11.7 1. TensorFlow_MNIST_Width_Solution.ipynb 14.01Кб
11.7 TensorFlow_MNIST_All_Exercises.ipynb 16.65Кб
11.8 2. TensorFlow_MNIST_Depth_Solution.ipynb 15.31Кб
11.8 TensorFlow_MNIST_around_98_percent_accuracy.ipynb 17.66Кб
11.9 3. TensorFlow_MNIST_Width_and_Depth_Solution.ipynb 16.81Кб
11.9 4. TensorFlow_MNIST_Activation_functions_Part_1_Solution.ipynb 15.11Кб
11. A2 No Endogeneity.mp4 35.68Мб
11. A2 No Endogeneity.srt 5.24Кб
11. Addition and Subtraction of Matrices.html 165б
11. A Note on Calculation of P-values with sklearn.html 372б
11. Backward Elimination or How to Simplify Your Model.mp4 39.56Мб
11. Backward Elimination or How to Simplify Your Model.srt 5.24Кб
11. Binary Predictors in a Logistic Regression - Exercise.html 87б
11. Business Case A Comment on the Homework.mp4 36.38Мб
11. Business Case A Comment on the Homework.srt 5.30Кб
11. Business Case Testing the Model.mp4 10.79Мб
11. Business Case Testing the Model.srt 2.04Кб
11. Dependence and Independence of Sets.mp4 34.79Мб
11. Dependence and Independence of Sets.srt 3.46Кб
11. Discrete Distributions The Binomial Distribution.mp4 68.83Мб
11. Discrete Distributions The Binomial Distribution.srt 8.30Кб
11. How to Interpret the Regression Table.mp4 44.64Мб
11. How to Interpret the Regression Table.srt 6.30Кб
11. Indexing Elements.html 165б
11. Margin of Error.html 165б
11. Market Segmentation with Cluster Analysis (Part 1).mp4 43.01Мб
11. Market Segmentation with Cluster Analysis (Part 1).srt 7.53Кб
11. MNIST - Exercises.html 1.98Кб
11. MNIST Solutions.html 2.19Кб
11. Obtaining Dummies from a Single Feature.mp4 81.12Мб
11. Obtaining Dummies from a Single Feature.srt 10.20Кб
11. p-value.html 165б
11. Solving Combinations.mp4 57.34Мб
11. Solving Combinations.srt 5.61Кб
11. Standard error.mp4 22.77Мб
11. Standard error.srt 2.02Кб
11. Techniques for Working with Traditional Methods.html 165б
11. The Histogram.mp4 13.78Мб
11. The Histogram.srt 3.01Кб
11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 38.31Мб
11. The Linear model with Multiple Inputs and Multiple Outputs.srt 5.46Кб
12.1 1.02. Multiple linear regression.csv 1.07Кб
12.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx 10.47Кб
12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx 14.54Кб
12.1 Accuracy_with_comments.ipynb 11.67Кб
12.1 Errors when adding scalars, vectors, and matrices in Python.ipynb 3.17Кб
12.1 Market segmentation example_Part2.ipynb 4.68Кб
12.1 Structure Your Code with Indentation - Solution_Py3.ipynb 1.50Кб
12.1 TensorFlow_Audiobooks_Machine_learning_Homework.ipynb 14.40Кб
12.1 TensorFlow_Audiobooks_Machine_Learning_with_comments.ipynb 11.95Кб
12.1 TensorFlow_MNIST_complete.ipynb 6.78Кб
12.2 Accuracy.ipynb 3.63Кб
12.2 Audiobooks_data.csv 710.77Кб
12.2 Market segmentation example_Part2_with_comments.ipynb 6.81Кб
12.2 sklearn - Multiple Linear Regression Summary Table.ipynb 13.71Кб
12.2 Structure Your Code with Indentation - Lecture_Py3.ipynb 958б
12.2 TensorFlow_MNIST_complete_with_comments.ipynb 14.51Кб
12.3 sklearn - Multiple Linear Regression Summary Table_with_comments.ipynb 16.63Кб
12.3 Structure Your Code with Indentation - Exercise_Py3.ipynb 956б
12.3 TensorFlow_Audiobooks_Preprocessing_with_comments.ipynb 11.19Кб
12. A2 No Endogeneity.html 165б
12. Business Case Final Exercise.html 433б
12. Business Case Final Exercise.html 439б
12. Calculating the Accuracy of the Model.mp4 32.86Мб
12. Calculating the Accuracy of the Model.srt 4.13Кб
12. Confidence intervals. Two means. Dependent samples.mp4 70.47Мб
12. Confidence intervals. Two means. Dependent samples.srt 8.03Кб
12. Creating a Summary Table with P-values.mp4 12.31Мб
12. Creating a Summary Table with P-values.srt 3.01Кб
12. Dependence and Independence of Sets.html 165б
12. Discrete Distributions The Binomial Distribution.html 165б
12. Errors when Adding Matrices.mp4 11.18Мб
12. Errors when Adding Matrices.srt 2.57Кб
12. EXERCISE - Obtaining Dummies from a Single Feature.html 129б
12. How to Interpret the Regression Table.html 165б
12. Market Segmentation with Cluster Analysis (Part 2).mp4 56.11Мб
12. Market Segmentation with Cluster Analysis (Part 2).srt 56.14Мб
12. MNIST Testing the Model.mp4 29.52Мб
12. MNIST Testing the Model.srt 6.02Кб
12. Real Life Examples of Traditional Methods.mp4 42.78Мб
12. Real Life Examples of Traditional Methods.srt 3.58Кб
12. Solving Combinations.html 165б
12. Standard Error.html 165б
12. Structuring with Indentation.mp4 5.47Мб
12. Structuring with Indentation.srt 2.18Кб
12. Test for the Mean. Population Variance Unknown.mp4 40.24Мб
12. Test for the Mean. Population Variance Unknown.srt 5.73Кб
12. Testing the Model We Created.mp4 49.07Мб
12. Testing the Model We Created.srt 6.50Кб
12. The Histogram.html 165б
12. The Linear model with Multiple Inputs and Multiple Outputs.html 165б
13.1 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx 13.74Кб
13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx 11.34Кб
13.1 Calculating the Accuracy of the Model - Exercise.ipynb 5.39Кб
13.1 Poisson - Expected Value and Variance.pdf 145.99Кб
13.1 real_estate_price_size_year.csv 2.35Кб
13.1 Statistics - PDF with Excel Solutions that don't visualize properly.pdf 289.12Кб
13.1 Symmetry Explained.pdf 85.04Кб
13.1 Tranpose of a matrix.ipynb 2.89Кб
13.2 2.5.The-Histogram-exercise-solution.xlsx 17.10Кб
13.2 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx 14.24Кб
13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx 12.63Кб
13.2 Calculating the Accuracy of the Model - Solution.ipynb 81.21Кб
13.2 sklearn - Multiple Linear Regression Exercise.ipynb 5.67Кб
13.3 2.5.The-Histogram-exercise.xlsx 15.50Кб
13.3 Bank_data.csv 19.55Кб
13.3 sklearn - Multiple Linear Regression Exercise Solution.ipynb 15.44Кб
13. A3 Normality and Homoscedasticity.mp4 42.70Мб
13. A3 Normality and Homoscedasticity.srt 6.67Кб
13. Calculating the Accuracy of the Model.html 87б
13. Confidence intervals. Two means. Dependent samples Exercise.html 81б
13. Decomposition of Variability.mp4 49.67Мб
13. Decomposition of Variability.srt 4.17Кб
13. Discrete Distributions The Poisson Distribution.mp4 55.75Мб
13. Discrete Distributions The Poisson Distribution.srt 6.57Кб
13. Estimators and Estimates.mp4 47.83Мб
13. Estimators and Estimates.srt 3.71Кб
13. Graphical Representation of Simple Neural Networks.mp4 22.65Мб
13. Graphical Representation of Simple Neural Networks.srt 2.69Кб
13. Histogram Exercise.html 81б
13. How is Clustering Useful.mp4 74.45Мб
13. How is Clustering Useful.srt 6.39Кб
13. Machine Learning (ML) Techniques.mp4 99.32Мб
13. Machine Learning (ML) Techniques.srt 8.73Кб
13. Multiple Linear Regression - Exercise.html 76б
13. Saving the Model and Preparing it for Deployment.mp4 37.45Мб
13. Saving the Model and Preparing it for Deployment.srt 5.57Кб
13. SOLUTION - Obtaining Dummies from a Single Feature.html 116б
13. Structuring with Indentation.html 165б
13. Symmetry of Combinations.mp4 40.30Мб
13. Symmetry of Combinations.srt 4.30Кб
13. Test for the Mean. Population Variance Unknown Exercise.html 81б
13. The Conditional Probability Formula.mp4 45.86Мб
13. The Conditional Probability Formula.srt 4.93Кб
13. Transpose of a Matrix.mp4 38.07Мб
13. Transpose of a Matrix.srt 5.37Кб
14.1 2.6. Cross table and scatter plot.xlsx 26.12Кб
14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx 9.83Кб
14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx 9.79Кб
14.1 Dot product.ipynb 2.13Кб
14.1 SKLEAR~1.IPY 12.87Кб
14.1 Species Segmentation with Cluster Analysis Part 1- Solution.ipynb 7.35Кб
14.2 1.02. Multiple linear regression.csv 1.07Кб
14.2 Species Segmentation with Cluster Analysis Part 1- Exercise.ipynb 4.46Кб
14.3 iris_dataset.csv 2.40Кб
14.3 sklearn - Feature Selection through Feature Scaling (Standardization) - Part 1.ipynb 11.73Кб
14. A4 No Autocorrelation.mp4 31.51Мб
14. A4 No Autocorrelation.srt 4.90Кб
14. ARTICLE - A Note on 'pickling'.html 2.14Кб
14. Confidence intervals. Two means. Independent Samples (Part 1).mp4 28.76Мб
14. Confidence intervals. Two means. Independent Samples (Part 1).srt 6.07Кб
14. Cross Tables and Scatter Plots.mp4 39.80Мб
14. Cross Tables and Scatter Plots.srt 6.68Кб
14. Decomposition of Variability.html 165б
14. Discrete Distributions The Poisson Distribution.html 165б
14. Dot Product.mp4 24.00Мб
14. Dot Product.srt 4.26Кб
14. Dropping a Dummy Variable from the Data Set.html 2.34Кб
14. Estimators and Estimates.html 165б
14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html 87б
14. Feature Scaling (Standardization).mp4 39.09Мб
14. Feature Scaling (Standardization).srt 7.68Кб
14. Graphical Representation of Simple Neural Networks.html 165б
14. Machine Learning (ML) Techniques.html 165б
14. Symmetry of Combinations.html 165б
14. Test for the Mean. Dependent Samples.mp4 50.37Мб
14. Test for the Mean. Dependent Samples.srt 6.26Кб
14. The Conditional Probability Formula.html 165б
14. Underfitting and Overfitting.mp4 22.30Мб
14. Underfitting and Overfitting.srt 4.97Кб
15.1 1.02. Multiple linear regression.csv 1.07Кб
15.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx 9.83Кб
15.1 4.7. Test for the mean. Dependent samples_exercise.xlsx 12.80Кб
15.1 Dot product (Part 2).ipynb 3.60Кб
15.1 Logistic Regression with Comments.html 210б
15.1 Solving Integrals.pdf 343.85Кб
15.1 Species Segmentation with Cluster Analysis Part 2 - Exercise.ipynb 10.74Кб
15.1 Testing the model.ipynb 5.77Кб
15.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx 10.12Кб
15.2 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx 14.40Кб
15.2 Logistic Regression.html 196б
15.2 SKLEAR~1.IPY 16.79Кб
15.2 Species Segmentation with Cluster Analysis Part 2 - Solution.ipynb 15.30Кб
15.2 Testing the model_with_comments.ipynb 7.56Кб
15.3 2.03. Test dataset.csv 322б
15.3 iris_dataset.csv 2.40Кб
15.3 sklearn - Feature Selection through Feature Scaling (Standardization) - Part 2.ipynb 14.89Кб
15.4 iris_with_answers.csv 3.63Кб
15. A4 No autocorrelation.html 165б
15. Characteristics of Continuous Distributions.mp4 84.12Мб
15. Characteristics of Continuous Distributions.srt 8.66Кб
15. Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html 81б
15. Cross Tables and Scatter Plots.html 165б
15. Dot Product of Matrices.mp4 49.43Мб
15. Dot Product of Matrices.srt 9.52Кб
15. EXERCISE - Saving the Model (and Scaler).html 284б
15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html 87б
15. Feature Selection through Standardization of Weights.mp4 34.90Мб
15. Feature Selection through Standardization of Weights.srt 7.26Кб
15. More on Dummy Variables A Statistical Perspective.mp4 13.75Мб
15. More on Dummy Variables A Statistical Perspective.srt 1.70Кб
15. Solving Combinations with Separate Sample Spaces.mp4 33.16Мб
15. Solving Combinations with Separate Sample Spaces.srt 3.73Кб
15. Test for the Mean. Dependent Samples Exercise.html 81б
15. Testing the Model.mp4 32.28Мб
15. Testing the Model.srt 6.55Кб
15. The Law of Total Probability.mp4 34.94Мб
15. The Law of Total Probability.srt 3.49Кб
15. Types of Machine Learning.mp4 125.14Мб
15. Types of Machine Learning.srt 10.51Кб
15. What is the Objective Function.mp4 17.92Мб
15. What is the Objective Function.srt 2.12Кб
15. What is the OLS.mp4 28.31Мб
15. What is the OLS.srt 3.82Кб
16.1 2.6. Cross table and scatter plot_exercise.xlsx 16.28Кб
16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx 9.52Кб
16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx 9.63Кб
16.1 Bank_data.csv 19.55Кб
16.1 sklearn - Making Predictions with the Standardized Coefficients.ipynb 29.75Кб
16.2 1.02. Multiple linear regression.csv 1.07Кб
16.2 2.6. Cross table and scatter plot_exercise_solution.xlsx 40.44Кб
16.2 Testing the Model - Solution.ipynb 111.10Кб
16.3 sklearn - Making Predictions with the Standardized Coefficients_with_comments.ipynb 22.03Кб
16.3 Testing the Model - Exercise..ipynb 6.79Кб
16.4 Bank_data_testing.csv 8.30Кб
16. A5 No Multicollinearity.mp4 28.71Мб
16. A5 No Multicollinearity.srt 4.62Кб
16. Characteristics of Continuous Distributions.html 165б
16. Classifying the Various Reasons for Absence.mp4 74.60Мб
16. Classifying the Various Reasons for Absence.srt 10.02Кб
16. Confidence intervals. Two means. Independent Samples (Part 2).mp4 26.83Мб
16. Confidence intervals. Two means. Independent Samples (Part 2).srt 4.51Кб
16. Cross Tables and Scatter Plots Exercise.html 81б
16. Predicting with the Standardized Coefficients.mp4 25.96Мб
16. Predicting with the Standardized Coefficients.srt 5.59Кб
16. Preparing the Deployment of the Model through a Module.mp4 44.49Мб
16. Preparing the Deployment of the Model through a Module.srt 5.62Кб
16. Solving Combinations with Separate Sample Spaces.html 165б
16. Test for the mean. Independent Samples (Part 1).mp4 33.95Мб
16. Test for the mean. Independent Samples (Part 1).srt 5.49Кб
16. Testing the Model - Exercise.html 87б
16. The Additive Rule.mp4 26.97Мб
16. The Additive Rule.srt 2.74Кб
16. Types of Machine Learning.html 165б
16. What is the Objective Function.html 165б
16. What is the OLS.html 165б
16. Why is Linear Algebra Useful.mp4 144.33Мб
16. Why is Linear Algebra Useful.srt 11.79Кб
17.1 2.7. Mean, median and mode_lesson.xlsx 10.49Кб
17.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx 9.79Кб
17.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx 11.25Кб
17.1 Normal Distribution - Exp and Var.pdf 144.08Кб
17.1 sklearn - Feature Scaling Exercise Solution.ipynb 16.28Кб
17.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx 9.17Кб
17.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx 10.77Кб
17.2 real_estate_price_size_year.csv 2.35Кб
17.3 sklearn - Feature Scaling Exercise.ipynb 6.07Кб
17. A5 No Multicollinearity.html 165б
17. Combinatorics in Real-Life The Lottery.mp4 41.30Мб
17. Combinatorics in Real-Life The Lottery.srt 4.15Кб
17. Common Objective Functions L2-norm Loss.mp4 23.28Мб
17. Common Objective Functions L2-norm Loss.srt 2.77Кб
17. Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html 81б
17. Continuous Distributions The Normal Distribution.mp4 48.24Мб
17. Continuous Distributions The Normal Distribution.srt 4.77Кб
17. Feature Scaling (Standardization) - Exercise.html 76б
17. Mean, median and mode.mp4 37.12Мб
17. Mean, median and mode.srt 5.73Кб
17. Real Life Examples of Machine Learning (ML).mp4 36.81Мб
17. Real Life Examples of Machine Learning (ML).srt 2.90Кб
17. R-Squared.mp4 41.03Мб
17. R-Squared.srt 6.57Кб
17. Test for the mean. Independent Samples (Part 1). Exercise.html 81б
17. The Additive Rule.html 165б
17. Using .concat() in Python.mp4 38.74Мб
17. Using .concat() in Python.srt 5.07Кб
18.1 2.7. Mean, median and mode_exercise_solution.xlsx 11.35Кб
18.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx 9.31Кб
18.1 Dummy Variables.ipynb 4.62Кб
18.2 2.7. Mean, median and mode_exercise.xlsx 10.87Кб
18.2 Dummy variables_with_comments.ipynb 7.09Кб
18.3 1.03. Dummies.csv 1.19Кб
18. Combinatorics in Real-Life The Lottery.html 165б
18. Common Objective Functions L2-norm Loss.html 165б
18. Confidence intervals. Two means. Independent Samples (Part 3).mp4 19.94Мб
18. Confidence intervals. Two means. Independent Samples (Part 3).srt 1.96Кб
18. Continuous Distributions The Normal Distribution.html 165б
18. Dealing with Categorical Data - Dummy Variables.mp4 55.66Мб
18. Dealing with Categorical Data - Dummy Variables.srt 8.15Кб
18. EXERCISE - Using .concat() in Python.html 189б
18. Mean, Median and Mode Exercise.html 81б
18. Real Life Examples of Machine Learning (ML).html 165б
18. R-Squared.html 165б
18. Test for the mean. Independent Samples (Part 2).mp4 36.39Мб
18. Test for the mean. Independent Samples (Part 2).srt 5.14Кб
18. The Multiplication Law.mp4 49.03Мб
18. The Multiplication Law.srt 4.62Кб
18. Underfitting and Overfitting.mp4 16.96Мб
18. Underfitting and Overfitting.srt 3.45Кб
19.1 2.8. Skewness_lesson.xlsx 34.63Кб
19.1 real_estate_price_size_year_view.csv 3.39Кб
19.1 sklearn - Train Test Split.ipynb 7.23Кб
19.2 Multiple Linear Regression with Dummies Exercise Solution.ipynb 18.00Кб
19.2 sklearn - Train Test Split_with_comments.ipynb 9.05Кб
19.3 Multiple Linear Regression with Dummies Exercise.ipynb 3.01Кб
19. A Recap of Combinatorics.mp4 38.50Мб
19. A Recap of Combinatorics.srt 3.72Кб
19. Common Objective Functions Cross-Entropy Loss.mp4 37.25Мб
19. Common Objective Functions Cross-Entropy Loss.srt 5.25Кб
19. Continuous Distributions The Standard Normal Distribution.mp4 47.90Мб
19. Continuous Distributions The Standard Normal Distribution.srt 5.28Кб
19. Dealing with Categorical Data - Dummy Variables.html 76б
19. Skewness.mp4 19.40Мб
19. Skewness.srt 3.64Кб
19. SOLUTION - Using .concat() in Python.html 142б
19. Test for the mean. Independent Samples (Part 2).html 165б
19. The Multiplication Law.html 165б
19. Train - Test Split Explained.mp4 49.17Мб
19. Train - Test Split Explained.srt 9.59Кб
2.1 2.13.Practical-example.Descriptive-statistics-exercise.xlsx 120.27Кб
2.1 3.01. Country clusters.csv 200б
2.1 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx 1.82Мб
2.1 3.2. What is a distribution_lesson.xlsx 19.46Кб
2.1 4.10.+Hypothesis+testing+section_practical+example_exercise.xlsx 43.69Кб
2.1 Absenteeism_predictions.csv 2.10Кб
2.1 Course_Notes_Cluster_Analysis.pdf 208.65Кб
2.1 Course_Notes_Logistic_Regression.pdf 335.17Кб
2.1 Course Notes - Section 6.pdf 936.42Кб
2.1 Creating a Function with a Parameter - Solution_Py3.ipynb 1.79Кб
2.1 Minimal_example_Part_2.ipynb 3.65Кб
2.1 sklearn - Linear Regression - Practical Example (Part 2)_with_comments.ipynb 335.63Кб
2.2 1.04. Real-life example.csv 219.83Кб
2.2 2.01. Admittance.csv 1.58Кб
2.2 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx 146.38Кб
2.2 3.17.Practical-example.Confidence-intervals-exercise.xlsx 1.73Мб
2.2 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx 44.27Кб
2.2 Country clusters_with_comments.ipynb 5.80Кб
2.2 Course notes_inferential statistics.pdf 382.32Кб
2.2 Creating a Function with a Parameter - Exercise_Py3.ipynb 1.16Кб
2.3 Admittance.ipynb 3.54Кб
2.3 Country clusters.ipynb 3.31Кб
2.3 Creating a Function with a Parameter - Lecture_Py3.ipynb 1.59Кб
2.3 sklearn - Linear Regression - Practical Example (Part 2).ipynb 328.74Кб
2.4 Admittance_with_comments.ipynb 5.32Кб
2. Analyzing Age vs Probability in Tableau.mp4 56.55Мб
2. Analyzing Age vs Probability in Tableau.srt 10.01Кб
2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html 165б
2. A Simple Example in Python.mp4 34.70Мб
2. A Simple Example in Python.srt 5.79Кб
2. A Simple Example of Clustering.mp4 51.83Мб
2. A Simple Example of Clustering.srt 9.59Кб
2. Basic NN Example (Part 2).mp4 34.95Мб
2. Basic NN Example (Part 2).srt 6.79Кб
2. Business Case Outlining the Solution.mp4 7.30Мб
2. Business Case Outlining the Solution.mp4 12.21Мб
2. Business Case Outlining the Solution.srt 2.00Кб
2. Business Case Outlining the Solution.srt 2.52Кб
2. Comparison Operators.html 165б
2. Creating the Targets for the Logistic Regression.mp4 45.80Мб
2. Creating the Targets for the Logistic Regression.srt 8.39Кб
2. Data Science and Business Buzzwords Why are there so Many.html 165б
2. Debunking Common Misconceptions.html 165б
2. Dendrogram.mp4 29.06Мб
2. Dendrogram.srt 7.36Кб
2. Deploying the 'absenteeism_module' - Part I.mp4 25.49Мб
2. Deploying the 'absenteeism_module' - Part I.srt 4.76Кб
2. Finding the Job - What to Expect and What to Look for.html 165б
2. For Loops.html 165б
2. Fundamentals of Combinatorics.html 165б
2. Fundamentals of Probability Distributions.html 165б
2. Further Reading on Null and Alternative Hypothesis.html 2.29Кб
2. How are we Going to Approach this Section.mp4 19.41Мб
2. How are we Going to Approach this Section.srt 2.92Кб
2. How to Create a Function with a Parameter.mp4 18.08Мб
2. How to Create a Function with a Parameter.srt 4.30Кб
2. How to Install TensorFlow 1.mp4 11.36Мб
2. How to Install TensorFlow 1.srt 3.42Кб
2. Importing the Absenteeism Data in Python.mp4 23.16Мб
2. Importing the Absenteeism Data in Python.srt 3.99Кб
2. Introduction to Neural Networks.html 165б
2. Introduction to Programming.html 165б
2. Introduction to Regression Analysis.html 165б
2. Iterating Over Range Objects.mp4 22.49Мб
2. Iterating Over Range Objects.srt 6.04Кб
2. Lists.html 165б
2. MNIST How to Tackle the MNIST.mp4 18.66Мб
2. MNIST How to Tackle the MNIST.mp4 22.59Мб
2. MNIST How to Tackle the MNIST.srt 3.52Кб
2. MNIST How to Tackle the MNIST.srt 3.62Кб
2. Multiple Linear Regression.html 165б
2. Necessary Programming Languages and Software Used in Data Science.html 165б
2. Object Oriented Programming.html 165б
2. Population and Sample.html 165б
2. Practical Example Descriptive Statistics Exercise.html 81б
2. Practical Example Hypothesis Testing Exercise.html 81б
2. Practical Example Inferential Statistics Exercise.html 81б
2. Practical Example Linear Regression (Part 2).mp4 46.00Мб
2. Practical Example Linear Regression (Part 2).srt 8.03Кб
2. Probability in Statistics.mp4 77.28Мб
2. Probability in Statistics.srt 8.44Кб
2. Problems with Gradient Descent.mp4 11.02Мб
2. Problems with Gradient Descent.srt 2.83Кб
2. Sets and Events.html 165б
2. Some Examples of Clusters.mp4 71.53Мб
2. Some Examples of Clusters.srt 6.24Кб
2. Techniques for Working with Traditional Data.html 165б
2. TensorFlow Outline and Comparison with Other Libraries.mp4 33.52Мб
2. TensorFlow Outline and Comparison with Other Libraries.srt 5.24Кб
2. The Basic Probability Formula.html 165б
2. The Business Task.mp4 39.16Мб
2. The Business Task.srt 3.74Кб
2. The IF Statement.html 165б
2. The Linear Regression Model.html 165б
2. The Reason Behind These Disciplines.html 165б
2. Types of Basic Preprocessing.mp4 11.85Мб
2. Types of Basic Preprocessing.srt 1.63Кб
2. Types of Data.html 165б
2. Types of Simple Initializations.mp4 14.31Мб
2. Types of Simple Initializations.srt 3.67Кб
2. Underfitting and Overfitting for Classification.mp4 25.08Мб
2. Underfitting and Overfitting for Classification.srt 2.63Кб
2. Using Arithmetic Operators in Python.html 165б
2. Variables.html 165б
2. What's Further out there in terms of Machine Learning.mp4 20.12Мб
2. What's Further out there in terms of Machine Learning.srt 2.55Кб
2. What are Confidence Intervals.html 165б
2. What are Data, Servers, Clients, Requests, and Responses.html 165б
2. What Does the Course Cover.mp4 62.25Мб
2. What Does the Course Cover.srt 5.08Кб
2. What is a Deep Net.mp4 29.54Мб
2. What is a Deep Net.srt 3.24Кб
2. What is a Distribution.mp4 61.59Мб
2. What is a Distribution.srt 5.85Кб
2. What is a Matrix.html 165б
20.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx 10.54Кб
20.1 Additional Exercises Combinatorics Solutions.pdf 245.67Кб
20.1 Making predictions.ipynb 5.77Кб
20.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx 11.39Кб
20.2 Additional Exercises Combinatorics.pdf 106.58Кб
20.2 Making predictions_with_comments.ipynb 9.41Кб
20. A Practical Example of Combinatorics.mp4 134.31Мб
20. A Practical Example of Combinatorics.srt 13.96Кб
20. Bayes' Law.mp4 49.93Мб
20. Bayes' Law.srt 7.20Кб
20. Common Objective Functions Cross-Entropy Loss.html 165б
20. Continuous Distributions The Standard Normal Distribution.html 165б
20. Making Predictions with the Linear Regression.mp4 24.70Мб
20. Making Predictions with the Linear Regression.srt 4.44Кб
20. Reordering Columns in a Pandas DataFrame in Python.mp4 14.02Мб
20. Reordering Columns in a Pandas DataFrame in Python.srt 1.82Кб
20. Skewness.html 165б
20. Test for the mean. Independent Samples (Part 2). Exercise.html 81б
21.1 2.8. Skewness_exercise.xlsx 9.49Кб
21.1 GD-function-example.xlsx 42.33Кб
21.2 2.8. Skewness_exercise_solution.xlsx 19.78Кб
21. Bayes' Law.html 165б
21. Continuous Distributions The Students' T Distribution.mp4 27.18Мб
21. Continuous Distributions The Students' T Distribution.srt 2.79Кб
21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 167б
21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 55.63Мб
21. Optimization Algorithm 1-Parameter Gradient Descent.srt 8.47Кб
21. Skewness Exercise.html 81б
22.1 2.9. Variance_lesson.xlsx 10.08Кб
22.1 CDS_2017-2018 Hamilton.pdf 845.31Кб
22.2 Bayesian Homework - Solutions.pdf 30.35Кб
22.3 Bayesian Homework .pdf 27.26Кб
22. A Practical Example of Bayesian Inference.mp4 145.12Мб
22. A Practical Example of Bayesian Inference.srt 19.32Кб
22. Continuous Distributions The Students' T Distribution.html 165б
22. Optimization Algorithm 1-Parameter Gradient Descent.html 165б
22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 471б
22. Variance.mp4 50.95Мб
22. Variance.srt 7.53Кб
23.1 2.9. Variance_exercise.xlsx 10.83Кб
23.1 Absenteeism Exercise - Preprocessing - df_reason_mod.ipynb 4.82Кб
23.2 2.9. Variance_exercise_solution.xlsx 11.05Кб
23. Continuous Distributions The Chi-Squared Distribution.mp4 26.34Мб
23. Continuous Distributions The Chi-Squared Distribution.srt 2.76Кб
23. Creating Checkpoints while Coding in Jupyter.mp4 25.68Мб
23. Creating Checkpoints while Coding in Jupyter.srt 3.64Кб
23. Optimization Algorithm n-Parameter Gradient Descent.mp4 39.43Мб
23. Optimization Algorithm n-Parameter Gradient Descent.srt 7.53Кб
23. Variance Exercise.html 522б
24.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx 10.97Кб
24. Continuous Distributions The Chi-Squared Distribution.html 165б
24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137б
24. Optimization Algorithm n-Parameter Gradient Descent.html 165б
24. Standard Deviation and Coefficient of Variation.mp4 45.13Мб
24. Standard Deviation and Coefficient of Variation.srt 6.60Кб
25. Continuous Distributions The Exponential Distribution.mp4 40.23Мб
25. Continuous Distributions The Exponential Distribution.srt 4.13Кб
25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html 117б
25. Standard Deviation.html 165б
26.1 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx 11.61Кб
26.2 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx 12.60Кб
26. Analyzing the Dates from the Initial Data Set.mp4 57.28Мб
26. Analyzing the Dates from the Initial Data Set.srt 8.43Кб
26. Continuous Distributions The Exponential Distribution.html 165б
26. Standard Deviation and Coefficient of Variation Exercise.html 81б
27.1 2.11. Covariance_lesson.xlsx 24.92Кб
27. Continuous Distributions The Logistic Distribution.mp4 47.05Мб
27. Continuous Distributions The Logistic Distribution.srt 5.02Кб
27. Covariance.mp4 27.49Мб
27. Covariance.srt 4.92Кб
27. Extracting the Month Value from the Date Column.mp4 47.79Мб
27. Extracting the Month Value from the Date Column.srt 7.97Кб
28. Continuous Distributions The Logistic Distribution.html 165б
28. Covariance.html 165б
28. Extracting the Day of the Week from the Date Column.mp4 27.97Мб
28. Extracting the Day of the Week from the Date Column.srt 4.47Кб
29.1 2.11. Covariance_exercise.xlsx 20.23Кб
29.1 Absenteeism Exercise - Preprocessing LECTURES.ipynb 7.61Мб
29.1 FIFA19.csv 8.64Мб
29.2 2.11. Covariance_exercise_solution.xlsx 29.51Кб
29.2 Absenteeism Exercise - Preprocessing - ChP - df_date_reason_mod.ipynb 7.33Кб
29.2 Daily Views.xlsx 9.53Кб
29.3 Absenteeism Exercise - Removing the Date Column - SOLUTION.ipynb 8.33Кб
29.3 Daily Views (post).xlsx 20.21Кб
29.4 FIFA19 (post).csv 8.64Мб
29.5 Customers_Membership.xlsx 9.69Кб
29.6 Customers_Membership (post).xlsx 15.62Кб
29. A Practical Example of Probability Distributions.mp4 157.82Мб
29. A Practical Example of Probability Distributions.srt 19.91Кб
29. Covariance Exercise.html 81б
29. EXERCISE - Removing the Date Column.html 1.21Кб
3.1 1.02. Multiple linear regression.csv 1.09Кб
3.1 12.3. TensorFlow_MNIST_with_comments_Part_1.ipynb 3.89Кб
3.1 3.9. Population variance known, z-score_lesson.xlsx 11.21Кб
3.1 Add an Else Statement - Exercise_Py3.ipynb 1.02Кб
3.1 Another Way to Define a Function - Solution_Py3.ipynb 1.98Кб
3.1 A Simple Example of Clustering - Exercise.ipynb 3.62Кб
3.1 Audiobooks-data.csv 710.77Кб
3.1 Course Notes - Section 2.pdf 578.08Кб
3.1 FAQ_The_Data_Science_Course.pdf 306.10Кб
3.1 Heatmaps.ipynb 1.82Кб
3.1 Help Yourself with Methods - Exercise_Py3.ipynb 1.91Кб
3.1 Logical and Identity Operators - Lecture_Py3.ipynb 5.86Кб
3.1 Minimal_example_Part_3.ipynb 6.79Кб
3.1 Numbers and Boolean Values - Lecture_Py3.ipynb 3.36Кб
3.1 Probability Cheat Sheet.pdf 320.28Кб
3.1 sklearn - Simple Linear Regression_with_comments.ipynb 6.06Кб
3.1 TensorFlow_MNIST_Part1_with_comments.ipynb 3.97Кб
3.1 The Double Equality Sign - Exercise_Py3.ipynb 838б
3.1 While Loops and Incrementing - Exercise_Py3.ipynb 1.12Кб
3.2 3.9.The-z-table.xlsx 25.58Кб
3.2 Add an Else Statement - Solution_Py3.ipynb 1.40Кб
3.2 Another Way to Define a Function - Lecture_Py3.ipynb 3.29Кб
3.2 Countries-exercise.csv 8.27Кб
3.2 Download all resources.html 134б
3.2 Heatmaps_with_comments.ipynb 17.66Кб
3.2 Help Yourself with Methods - Solution_Py3.ipynb 2.83Кб
3.2 Logical and Identity Operators - Solution_Py3.ipynb 3.43Кб
3.2 Multiple linear regression and Adjusted R-squared_with_comments.ipynb 2.80Кб
3.2 Numbers and Boolean Values - Exercise_Py3.ipynb 2.29Кб
3.2 sklearn - Simple Linear Regression.ipynb 4.92Кб
3.2 The Double Equality Sign - Solution_Py3.ipynb 1.14Кб
3.2 While Loops and Incrementing - Solution_Py3.ipynb 1.75Кб
3.3 1.01. Simple linear regression.csv 922б
3.3 Add an Else Statement - Lecture_Py3.ipynb 1.76Кб
3.3 Another Way to Define a Function - Exercise_Py3.ipynb 1.24Кб
3.3 A Simple Example of Clustering - Solution.ipynb 4.65Кб
3.3 Country clusters standardized.csv 244б
3.3 Help Yourself with Methods - Lecture_Py3.ipynb 4.39Кб
3.3 Logical and Identity Operators - Lecture_Py3.ipynb 5.86Кб
3.3 Multiple linear regression and Adjusted R-squared_.ipynb 2.15Кб
3.3 Numbers and Boolean Values - Solution_Py3.ipynb 3.23Кб
3.3 The Double Equality Sign - Lecture_Py3.ipynb 1.45Кб
3.3 While Loops and Incrementing - Lecture_Py3.ipynb 1.08Кб
3. Adjusted R-Squared.mp4 54.83Мб
3. Adjusted R-Squared.srt 7.53Кб
3. A Note on Installing Packages in Anaconda.html 2.30Кб
3. A Note on Multicollinearity.html 849б
3. A Simple Example of Clustering - Exercise.html 87б
3. Basic NN Example (Part 3).mp4 24.41Мб
3. Basic NN Example (Part 3).srt 48.83Мб
3. Business Case Balancing the Dataset.mp4 30.43Мб
3. Business Case Balancing the Dataset.srt 4.50Кб
3. Checking the Content of the Data Set.mp4 61.91Мб
3. Checking the Content of the Data Set.srt 7.04Кб
3. Computing Expected Values.mp4 75.69Мб
3. Computing Expected Values.srt 6.68Кб
3. Confidence Intervals; Population Variance Known; Z-score.mp4 78.20Мб
3. Confidence Intervals; Population Variance Known; Z-score.srt 9.80Кб
3. Correlation vs Regression.mp4 14.73Мб
3. Correlation vs Regression.srt 2.10Кб
3. DeepMind and Deep Learning.html 1.05Кб
3. Defining a Function in Python - Part II.mp4 11.14Мб
3. Defining a Function in Python - Part II.srt 2.87Кб
3. Deploying the 'absenteeism_module' - Part II.mp4 54.25Мб
3. Deploying the 'absenteeism_module' - Part II.srt 7.53Кб
3. Difference between Classification and Clustering.mp4 36.16Мб
3. Difference between Classification and Clustering.srt 3.28Кб
3. Digging into a Deep Net.mp4 59.36Мб
3. Digging into a Deep Net.srt 6.70Кб
3. Download All Resources and Important FAQ.html 21.37Кб
3. EXERCISE - Reasons vs Probability.html 397б
3. Heatmaps.mp4 29.62Мб
3. Heatmaps.srt 6.34Кб
3. Introducing the Data Set.mp4 40.87Мб
3. Introducing the Data Set.srt 4.15Кб
3. Introduction to Nested For Loops.mp4 29.47Мб
3. Introduction to Nested For Loops.srt 8.30Кб
3. Levels of Measurement.mp4 54.38Мб
3. Levels of Measurement.srt 4.54Кб
3. Logical and Identity Operators.mp4 30.05Мб
3. Logical and Identity Operators.srt 5.77Кб
3. Logistic vs Logit Function.mp4 86.50Мб
3. Logistic vs Logit Function.srt 4.88Кб
3. MNIST Importing the Relevant Packages and Loading the Data.mp4 16.32Мб
3. MNIST Importing the Relevant Packages and Loading the Data.srt 3.07Кб
3. MNIST Relevant Packages.mp4 18.91Мб
3. MNIST Relevant Packages.srt 2.12Кб
3. Modules and Packages.mp4 8.51Мб
3. Modules and Packages.srt 1.26Кб
3. Momentum.mp4 16.43Мб
3. Momentum.srt 3.45Кб
3. Null vs Alternative Hypothesis.html 165б
3. Numbers and Boolean Values in Python.mp4 17.06Мб
3. Numbers and Boolean Values in Python.srt 3.68Кб
3. Permutations and How to Use Them.mp4 42.73Мб
3. Permutations and How to Use Them.srt 4.07Кб
3. Probability in Data Science.mp4 63.49Мб
3. Probability in Data Science.srt 6.65Кб
3. Real Life Examples of Traditional Data.mp4 29.94Мб
3. Real Life Examples of Traditional Data.srt 2.24Кб
3. Scalars and Vectors.mp4 33.85Мб
3. Scalars and Vectors.srt 3.78Кб
3. Selecting the Inputs for the Logistic Regression.mp4 16.76Мб
3. Selecting the Inputs for the Logistic Regression.srt 3.66Кб
3. Simple Linear Regression with sklearn.mp4 34.78Мб
3. Simple Linear Regression with sklearn.srt 7.33Кб
3. Standardization.mp4 50.98Мб
3. Standardization.srt 5.97Кб
3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 17.15Мб
3. State-of-the-Art Method - (Xavier) Glorot Initialization.srt 3.71Кб
3. TensorFlow 1 vs TensorFlow 2.mp4 22.00Мб
3. TensorFlow 1 vs TensorFlow 2.srt 3.63Кб
3. The Double Equality Sign.mp4 5.99Мб
3. The Double Equality Sign.srt 1.82Кб
3. The ELSE Statement.mp4 10.84Мб
3. The ELSE Statement.srt 3.11Кб
3. The Importance of Working with a Balanced Dataset.mp4 39.41Мб
3. The Importance of Working with a Balanced Dataset.srt 4.48Кб
3. Training the Model.mp4 28.72Мб
3. Training the Model.srt 4.28Кб
3. Types of Probability Distributions.mp4 71.06Мб
3. Types of Probability Distributions.srt 9.31Кб
3. Using Methods.mp4 37.60Мб
3. Using Methods.srt 8.36Кб
3. Ways Sets Can Interact.mp4 47.43Мб
3. Ways Sets Can Interact.srt 4.39Кб
3. What are Data Connectivity, APIs, and Endpoints.mp4 104.08Мб
3. What are Data Connectivity, APIs, and Endpoints.srt 8.54Кб
3. What is a Distribution.html 165б
3. What is the difference between Analysis and Analytics.mp4 53.55Мб
3. What is the difference between Analysis and Analytics.srt 5.07Кб
3. What is Validation.mp4 32.71Мб
3. What is Validation.srt 4.90Кб
3. While Loops and Incrementing.mp4 28.44Мб
3. While Loops and Incrementing.srt 5.90Кб
3. Why Python.mp4 75.07Мб
3. Why Python.srt 6.96Кб
30. Analyzing Several Straightforward Columns for this Exercise.mp4 29.52Мб
30. Analyzing Several Straightforward Columns for this Exercise.srt 4.34Кб
30. Correlation Coefficient.mp4 29.38Мб
30. Correlation Coefficient.srt 4.71Кб
31. Correlation.html 165б
31. Working on Education, Children, and Pets.mp4 39.60Мб
31. Working on Education, Children, and Pets.srt 5.67Кб
32.1 2.12. Correlation_exercise_solution.xlsx 29.48Кб
32.1 Absenteeism Exercise - Preprocessing - df_preprocessed.ipynb 8.51Кб
32.2 2.12. Correlation_exercise.xlsx 29.30Кб
32.2 Absenteeism Exercise - EXERCISES and SOLUTIONS.ipynb 4.13Кб
32. Correlation Coefficient Exercise.html 81б
32. Final Remarks of this Section.mp4 21.64Мб
32. Final Remarks of this Section.srt 2.47Кб
33. A Note on Exporting Your Data as a .csv File.html 883б
4.1 0.6.4 Using a Function in another Function - Solution_Py3.ipynb 1.60Кб
4.1 1.01. Simple linear regression.csv 922б
4.1 12.4. TensorFlow_MNIST_with_comments_Part_2.ipynb 6.10Кб
4.1 3.9. Population variance known, z-score_exercise_solution.xlsx 11.16Кб
4.1 Absenteeism Exercise - Deploying the 'absenteeism_module'.ipynb 973б
4.1 Admittance regression.ipynb 2.09Кб
4.1 Audiobooks_data.csv 710.77Кб
4.1 Categorical data_with_comments.ipynb 5.62Кб
4.1 Course notes_hypothesis_testing.pdf 656.44Кб
4.1 Create Lists with the range() Function - Exercise_Py3.ipynb 1.45Кб
4.1 Else If, for Brief - Elif - Exercise_Py3.ipynb 1.75Кб
4.1 Minimal_example_Part_4_Complete.ipynb 11.41Кб
4.1 sklearn - Linear Regression - Practical Example (Part 3).ipynb 343.58Кб
4.1 TensorFlow_Audiobooks_Preprocessing.ipynb 5.58Кб
4.2 0.6.4 Using a Function in another Function - Lecture_Py3.ipynb 1015б
4.2 3.9.The-z-table.xlsx 25.58Кб
4.2 Admittance regression tables_fixed_error.ipynb 4.11Кб
4.2 Categorical data.ipynb 3.35Кб
4.2 Create Lists with the range() Function - Lecture_Py3.ipynb 1.34Кб
4.2 Else If, for Brief - Elif - Lecture_Py3.ipynb 3.24Кб
4.2 sklearn - Linear Regression - Practical Example (Part 3)_with_comments.ipynb 351.47Кб
4.2 sklearn - Simple Linear Regression.ipynb 26.07Кб
4.2 TensorFlow_Audiobooks_Preprocessing_with_comments.ipynb 11.19Кб
4.2 TensorFlow_Audiobooks_Preprocessing_with_comments.ipynb 11.19Кб
4.3 0.6.4 Using a Function in another Function - Exercise_Py3.ipynb 1.04Кб
4.3 3.9. Population variance known, z-score_exercise.xlsx 10.83Кб
4.3 Admittance regression_summary_error.ipynb 2.48Кб
4.3 Create Lists with the range() Function - Solution_Py3.ipynb 2.25Кб
4.3 Else If, for Brief - Elif - Solution_Py3.ipynb 2.40Кб
4.3 sklearn - Linear Regression - Practical Example (Part 3).html 134б
4.3 sklearn - Simple Linear Regression_with_comments.ipynb 28.35Кб
4.3 TensorFlow_Audiobooks_Preprocessing.ipynb 5.58Кб
4. Adjusted R-Squared.html 165б
4. Analyzing Reasons vs Probability in Tableau.mp4 59.33Мб
4. Analyzing Reasons vs Probability in Tableau.srt 9.54Кб
4. A Note on TensorFlow 2 Syntax.mp4 6.76Мб
4. A Note on TensorFlow 2 Syntax.srt 1.36Кб
4. An overview of CNNs.mp4 58.79Мб
4. An overview of CNNs.srt 6.44Кб
4. Basic NN Example (Part 4).mp4 61.13Мб
4. Basic NN Example (Part 4).srt 10.86Кб
4. Building a Logistic Regression.mp4 17.11Мб
4. Building a Logistic Regression.srt 3.28Кб
4. Business Case Preprocessing.mp4 103.41Мб
4. Business Case Preprocessing.srt 13.45Кб
4. Business Case Preprocessing the Data.mp4 84.33Мб
4. Business Case Preprocessing the Data.srt 12.30Кб
4. Clustering Categorical Data.mp4 21.23Мб
4. Clustering Categorical Data.srt 3.24Кб
4. Computing Expected Values.html 165б
4. Confidence Intervals; Population Variance Known; Z-score; Exercise.html 81б
4. Correlation vs Regression.html 165б
4. Exporting the Obtained Data Set as a .csv.html 998б
4. How to Use a Function within a Function.mp4 8.14Мб
4. How to Use a Function within a Function.srt 2.03Кб
4. Introducing the Data Set.html 165б
4. Introduction to Terms with Multiple Meanings.mp4 27.86Мб
4. Introduction to Terms with Multiple Meanings.srt 4.05Кб
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 29.09Мб
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.srt 5.93Кб
4. Levels of Measurement.html 165б
4. Lists with the range() Function.mp4 25.80Мб
4. Lists with the range() Function.srt 7.66Кб
4. Logical and Identity Operators.html 165б
4. Math Prerequisites.mp4 14.56Мб
4. Math Prerequisites.srt 4.05Кб
4. MNIST Model Outline.mp4 56.38Мб
4. MNIST Model Outline.srt 9.06Кб
4. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 29.04Мб
4. MNIST Preprocess the Data - Create a Validation Set and Scale It.srt 6.27Кб
4. Modules and Packages.html 165б
4. Non-Linearities and their Purpose.mp4 27.69Мб
4. Non-Linearities and their Purpose.srt 3.88Кб
4. Numbers and Boolean Values in Python.html 165б
4. Permutations and How to Use Them.html 165б
4. Practical Example Linear Regression (Part 3).mp4 23.69Мб
4. Practical Example Linear Regression (Part 3).srt 4.12Кб
4. Preprocessing Categorical Data.mp4 18.60Мб
4. Preprocessing Categorical Data.srt 2.76Кб
4. Rejection Region and Significance Level.mp4 82.61Мб
4. Rejection Region and Significance Level.srt 8.69Кб
4. Scalars and Vectors.html 165б
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 32.00Мб
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.srt 6.69Кб
4. Standardizing the Data.mp4 20.60Мб
4. Standardizing the Data.srt 4.19Кб
4. Techniques for Working with Big Data.mp4 75.50Мб
4. Techniques for Working with Big Data.srt 5.67Кб
4. TensorFlow Intro.mp4 47.69Мб
4. TensorFlow Intro.srt 5.20Кб
4. The Double Equality Sign.html 165б
4. The ELIF Statement.mp4 25.08Мб
4. The ELIF Statement.srt 6.60Кб
4. The Normal Distribution.mp4 49.86Мб
4. The Normal Distribution.srt 4.90Кб
4. Training, Validation, and Test Datasets.mp4 25.19Мб
4. Training, Validation, and Test Datasets.srt 3.60Кб
4. Training the Model.html 165б
4. Triple Nested For Loops.mp4 46.59Мб
4. Triple Nested For Loops.srt 8.00Кб
4. Types of Probability Distributions.html 165б
4. Using Methods.html 165б
4. Ways Sets Can Interact.html 165б
4. What are Data Connectivity, APIs, and Endpoints.html 165б
4. What is the difference between Analysis and Analytics.html 165б
4. Why Python.html 165б
5.10 Minimal_example_Exercise_6_Solution.ipynb 61.76Кб
5.1 1.04. Real-life example.csv 219.83Кб
5.1 12.5. TensorFlow_MNIST_with_comments_Part_3.ipynb 7.31Кб
5.11 Minimal_example_Exercise_6.ipynb 61.76Кб
5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx 30.77Кб
5.1 365_DataScience_Diagram.pdf 323.08Кб
5.1 A Note on Boolean Values - Lecture_Py3.ipynb 791б
5.1 Building a Logistic Regression - Solution.ipynb 4.44Кб
5.1 Categorical.csv 10.34Кб
5.1 Combining Conditional Statements and Functions - Solution_Py3.ipynb 1.65Кб
5.1 List Slicing - Lecture_Py3.ipynb 5.02Кб
5.1 Minimal_example_Exercise_1_Solution.ipynb 69.00Кб
5.1 Multiple Linear Regression Exercise Solution.ipynb 13.39Кб
5.1 Reassign Values - Solution_Py3.ipynb 2.12Кб
5.1 Shortcuts-for-Jupyter.pdf 619.17Кб
5.1 Strings - Solution_Py3.ipynb 5.45Кб
5.1 TensorFlow_Audiobooks_Preprocessing_Exercise_Solution.ipynb 10.03Кб
5.1 TensorFlow_Audiobooks_Preprocessing_Exercise.ipynb 8.60Кб
5.1 TensorFlow_Minimal_example_Part1.ipynb 1.66Кб
5.1 TensorFlow_MNIST_Part2_with_comments.ipynb 6.39Кб
5.2 Audiobooks_data.csv 710.77Кб
5.2 Clustering Categorical Data - Exercise.ipynb 3.78Кб
5.2 Combining Conditional Statements and Functions - Lecture_Py3.ipynb 1.29Кб
5.2 Example_bank_data.csv 6.21Кб
5.2 List Slicing - Exercise_Py3.ipynb 2.79Кб
5.2 Minimal_example_All_Exercises.ipynb 12.89Кб
5.2 real_estate_price_size_year.csv 2.35Кб
5.2 Reassign Values - Exercise_Py3.ipynb 1.67Кб
5.2 sklearn - Dummies and VIF - Exercise Solution.ipynb 370.22Кб
5.2 Strings - Lecture_Py3.ipynb 7.56Кб
5.2 TensorFlow_Audiobooks_Preprocessing_Exercise_Solution.ipynb 10.04Кб
5.3 Building a Logistic Regression - Exercise.ipynb 2.92Кб
5.3 Clustering Categorical Data - Solution.ipynb 4.90Кб
5.3 Combining Conditional Statements and Functions - Exercise_Py3.ipynb 1.06Кб
5.3 List Slicing - Solution_Py3.ipynb 4.26Кб
5.3 Minimal_example_Exercise_5_Solution.ipynb 68.88Кб
5.3 Multiple Linear Regression Exercise.ipynb 2.45Кб
5.3 Reassign Values - Lecture_Py3.ipynb 3.08Кб
5.3 sklearn - Dummies and VIF - Exercise.ipynb 344.62Кб
5.3 Strings - Exercise_Py3.ipynb 2.61Кб
5.3 TensorFlow_Audiobooks_Preprocessing_Exercise.ipynb 8.60Кб
5.4 Minimal_example_Exercise_3.d. Solution.ipynb 84.13Кб
5.5 Minimal_example_Exercise_3.b. Solution.ipynb 67.72Кб
5.6 Minimal_example_Exercise_3.a. Solution.ipynb 67.89Кб
5.7 Minimal_example_Exercise_2_Solution.ipynb 61.41Кб
5.8 Minimal_example_Exercise_3.c. Solution.ipynb 70.13Кб
5.9 Minimal_example_Exercise_4_Solution.ipynb 66.52Кб
5. Activation Functions.mp4 25.09Мб
5. Activation Functions.srt 5.25Кб
5. Actual Introduction to TensorFlow.mp4 17.41Мб
5. Actual Introduction to TensorFlow.srt 2.17Кб
5. A Note on Boolean Values.mp4 8.90Мб
5. A Note on Boolean Values.srt 2.91Кб
5. A Note on Normalization.html 733б
5. An Overview of RNNs.mp4 25.26Мб
5. An Overview of RNNs.srt 3.71Кб
5. Basic NN Example Exercises.html 1.66Кб
5. Binary and One-Hot Encoding.mp4 28.94Мб
5. Binary and One-Hot Encoding.srt 4.81Кб
5. Building a Logistic Regression - Exercise.html 87б
5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 64.51Мб
5. Business Analytics, Data Analytics, and Data Science An Introduction.srt 10.63Кб
5. Business Case Preprocessing Exercise.html 383б
5. Business Case Preprocessing the Data - Exercise.html 370б
5. Categorical Variables - Visualization Techniques.mp4 36.64Мб
5. Categorical Variables - Visualization Techniques.srt 6.30Кб
5. Characteristics of Discrete Distributions.mp4 22.71Мб
5. Characteristics of Discrete Distributions.srt 2.46Кб
5. Clustering Categorical Data - Exercise.html 87б
5. Conditional Statements and Functions.mp4 15.68Мб
5. Conditional Statements and Functions.srt 3.51Кб
5. Confidence Interval Clarifications.mp4 57.03Мб
5. Confidence Interval Clarifications.srt 5.41Кб
5. Dummies and Variance Inflation Factor - Exercise.html 76б
5. EXERCISE - Transportation Expense vs Probability.html 553б
5. Frequency.mp4 61.73Мб
5. Frequency.srt 6.42Кб
5. Geometrical Representation of the Linear Regression Model.mp4 5.13Мб
5. Geometrical Representation of the Linear Regression Model.srt 1.64Кб
5. How to Reassign Values.mp4 4.01Мб
5. How to Reassign Values.srt 1.29Кб
5. Intersection of Sets.mp4 26.97Мб
5. Intersection of Sets.srt 2.47Кб
5. Learning Rate Schedules Visualized.mp4 9.11Мб
5. Learning Rate Schedules Visualized.srt 2.16Кб
5. Linear Algebra and Geometry.mp4 49.79Мб
5. Linear Algebra and Geometry.srt 4.09Кб
5. List Comprehensions.mp4 55.45Мб
5. List Comprehensions.srt 12.35Кб
5. List Slicing.mp4 30.76Мб
5. List Slicing.srt 5.55Кб
5. Lists with the range() Function.html 165б
5. MNIST Loss and Optimization Algorithm.mp4 25.86Мб
5. MNIST Loss and Optimization Algorithm.srt 3.53Кб
5. MNIST Preprocess the Data - Scale the Test Data - Exercise.html 79б
5. Multiple Linear Regression Exercise.html 76б
5. N-Fold Cross Validation.mp4 20.70Мб
5. N-Fold Cross Validation.srt 4.17Кб
5. Python Strings.mp4 24.16Мб
5. Python Strings.srt 7.10Кб
5. Rejection Region and Significance Level.html 165б
5. Simple Operations with Factorials.mp4 36.12Мб
5. Simple Operations with Factorials.srt 3.26Кб
5. Splitting the Data for Training and Testing.mp4 52.77Мб
5. Splitting the Data for Training and Testing.srt 8.10Кб
5. Taking a Closer Look at APIs.mp4 115.59Мб
5. Taking a Closer Look at APIs.srt 10.39Кб
5. Techniques for Working with Big Data.html 165б
5. The Normal Distribution.html 165б
5. Types of File Formats Supporting TensorFlow.mp4 16.40Мб
5. Types of File Formats Supporting TensorFlow.srt 3.50Кб
5. Types of Machine Learning.mp4 45.10Мб
5. Types of Machine Learning.srt 36.14Мб
5. What's Regression Analysis - a Quick Refresher.html 2.84Кб
5. What is the Standard Library.mp4 18.04Мб
5. What is the Standard Library.srt 3.56Кб
5. Why Jupyter.mp4 44.31Мб
5. Why Jupyter.srt 4.64Кб
6.1 1.04. Real-life example.csv 219.83Кб
6.1 12.6. TensorFlow_MNIST_with_comments_Part_4.ipynb 7.90Кб
6.1 3.4. Standard normal distribution_lesson.xlsx 10.38Кб
6.1 5.3. TensorFlow_Minimal_example_Part_1.ipynb 3.36Кб
6.1 Additional-Python-Tools-Solutions.ipynb 25.49Кб
6.1 Creating Functions Containing a Few Arguments - Lecture_Py3.ipynb 1.72Кб
6.1 Selecting the number of clusters_with_comments.ipynb 7.48Кб
6.1 sklearn - Simple Linear Regression.ipynb 26.07Кб
6.1 TensorFlow_Minimal_example_Part2.ipynb 9.06Кб
6.1 Tuples - Solution_Py3.ipynb 4.61Кб
6.1 Use Conditional Statements and Loops Together - Exercise_Py3.ipynb 2.10Кб
6.2 Additional-Python-Tools-Lectures.ipynb 13.47Кб
6.2 Selecting the number of clusters.ipynb 4.53Кб
6.2 sklearn - Linear Regression - Practical Example (Part 4).ipynb 397.23Кб
6.2 sklearn - Simple Linear Regression_with_comments.ipynb 28.35Кб
6.2 Tuples - Lecture_Py3.ipynb 2.91Кб
6.2 Use Conditional Statements and Loops Together - Lecture_Py3.ipynb 1.95Кб
6.3 1.01. Simple linear regression.csv 922б
6.3 Additional-Python-Tools-Exercises.ipynb 11.37Кб
6.3 sklearn - Linear Regression - Practical Example (Part 4)_with_comments.ipynb 407.59Кб
6.3 Tuples - Exercise_Py3.ipynb 2.07Кб
6.3 Use Conditional Statements and Loops Together - Solution_Py3.ipynb 2.96Кб
6. Activation Functions Softmax Activation.mp4 25.92Мб
6. Activation Functions Softmax Activation.srt 4.46Кб
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 26.36Мб
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).srt 5.21Кб
6. Analyzing Transportation Expense vs Probability in Tableau.mp4 40.64Мб
6. Analyzing Transportation Expense vs Probability in Tableau.srt 7.21Кб
6. An Invaluable Coding Tip.mp4 23.05Мб
6. An Invaluable Coding Tip.srt 3.20Кб
6. Anonymous (Lambda) Functions.mp4 38.54Мб
6. Anonymous (Lambda) Functions.srt 9.88Кб
6. A Note on Boolean Values.html 165б
6. An Overview of non-NN Approaches.mp4 44.77Мб
6. An Overview of non-NN Approaches.srt 5.12Кб
6. Business Analytics, Data Analytics, and Data Science An Introduction.html 165б
6. Business Case Load the Preprocessed Data.mp4 17.57Мб
6. Business Case Load the Preprocessed Data.srt 4.70Кб
6. Calculating the Accuracy of the Model.mp4 43.91Мб
6. Calculating the Accuracy of the Model.srt 5.19Кб
6. Categorical Variables - Visualization Techniques.html 165б
6. Characteristics of Discrete Distributions.html 165б
6. Conditional Statements and Loops.mp4 27.76Мб
6. Conditional Statements and Loops.srt 7.46Кб
6. Creating a Data Provider.mp4 76.34Мб
6. Creating a Data Provider.srt 7.75Кб
6. Early Stopping or When to Stop Training.mp4 24.18Мб
6. Early Stopping or When to Stop Training.srt 6.86Кб
6. Fitting the Model and Assessing its Accuracy.mp4 41.62Мб
6. Fitting the Model and Assessing its Accuracy.srt 7.38Кб
6. Frequency.html 165б
6. Functions Containing a Few Arguments.mp4 6.02Мб
6. Functions Containing a Few Arguments.srt 1.33Кб
6. Geometrical Representation of the Linear Regression Model.html 165б
6. How to Choose the Number of Clusters.mp4 44.14Мб
6. How to Choose the Number of Clusters.srt 7.37Кб
6. How to Reassign Values.html 165б
6. Intersection of Sets.html 165б
6. Linear Algebra and Geometry.html 165б
6. MNIST Preprocess the Data - Shuffle and Batch.mp4 41.52Мб
6. MNIST Preprocess the Data - Shuffle and Batch.srt 9.26Кб
6. Outlining the Model with TensorFlow 2.mp4 34.69Мб
6. Outlining the Model with TensorFlow 2.srt 7.83Кб
6. Practical Example Linear Regression (Part 4).mp4 56.04Мб
6. Practical Example Linear Regression (Part 4).srt 11.49Кб
6. Python Strings.html 165б
6. Real Life Examples of Big Data.mp4 22.03Мб
6. Real Life Examples of Big Data.srt 1.88Кб
6. Simple Linear Regression with sklearn - Exercise.html 76б
6. Simple Operations with Factorials.html 165б
6. Student's T Distribution.mp4 35.43Мб
6. Student's T Distribution.srt 4.13Кб
6. Taking a Closer Look at APIs.html 165б
6. Test for Significance of the Model (F-Test).mp4 16.43Мб
6. Test for Significance of the Model (F-Test).srt 2.55Кб
6. The Standard Normal Distribution.mp4 22.50Мб
6. The Standard Normal Distribution.srt 3.94Кб
6. Tuples.mp4 29.49Мб
6. Tuples.srt 6.92Кб
6. Type I Error and Type II Error.mp4 43.93Мб
6. Type I Error and Type II Error.srt 5.67Кб
6. Types of File Formats, supporting Tensors.mp4 20.34Мб
6. Types of File Formats, supporting Tensors.srt 3.45Кб
6. Types of Machine Learning.html 165б
6. Using a Statistical Approach towards the Solution to the Exercise.mp4 20.18Мб
6. Using a Statistical Approach towards the Solution to the Exercise.srt 2.80Кб
6. What is the Standard Library.html 165б
6. Why Jupyter.html 165б
7.1 1.02. Multiple linear regression.csv 1.07Кб
7.1 12.7. TensorFlow_MNIST_with_comments_Part_5.ipynb 8.53Кб
7.1 2.3. Categorical variables. Visualization techniques_exercise.xlsx 15.24Кб
7.1 365_DataScience.png 6.92Мб
7.1 5.4. TensorFlow_Minimal_example_Part_2.ipynb 6.17Кб
7.1 Add Comments - Lecture_Py3.ipynb 1.03Кб
7.1 All In - Exercise_Py3.ipynb 1.30Кб
7.1 Dictionaries - Solution_Py3.ipynb 6.16Кб
7.1 How to Choose the Number of Clusters - Exercise.ipynb 5.55Кб
7.1 Notable Built-In Functions in Python - Solution_Py3.ipynb 5.52Кб
7.1 Scalars, Vectors, and Matrices.ipynb 4.55Кб
7.1 TensorFlow_Audiobooks_Machine_Learning_Part1_with_comments.ipynb 4.61Кб
7.1 TensorFlow_Audiobooks_Outlining_the_model_with_comments.ipynb 10.34Кб
7.1 TensorFlow_Minimal_example_Part3.ipynb 76.52Кб
7.1 TensorFlow_MNIST_Part3_with_comments.ipynb 8.61Кб
7.2 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx 41.11Кб
7.2 365_DataScience_Diagram.pdf 323.08Кб
7.2 All In - Solution_Py3.ipynb 1.90Кб
7.2 Countries_exercise.csv 8.27Кб
7.2 Dictionaries - Exercise_Py3.ipynb 2.92Кб
7.2 Notable Built-In Functions in Python - Exercise_Py3.ipynb 3.66Кб
7.2 sklearn - Multiple Linear Regression_with_comments.ipynb 8.65Кб
7.2 TensorFlow_Audiobooks_Outlining_the_model.ipynb 9.36Кб
7.3 All In - Lecture_Py3.ipynb 1.62Кб
7.3 Dictionaries - Lecture_Py3.ipynb 4.35Кб
7.3 How to Choose the Number of Clusters - Solution.ipynb 8.49Кб
7.3 Notable Built-In Functions in Python - Lecture_Py3.ipynb 4.51Кб
7.3 sklearn - Multiple Linear Regression.ipynb 7.79Кб
7.3 Statistics - PDF with Excel Solutions that don't visualize properly.pdf 289.12Кб
7. Adam (Adaptive Moment Estimation).mp4 22.35Мб
7. Adam (Adaptive Moment Estimation).srt 3.33Кб
7. Add Comments.mp4 4.68Мб
7. Add Comments.srt 1.80Кб
7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 26.68Мб
7. Arrays in Python - A Convenient Way To Represent Matrices.srt 6.13Кб
7. Backpropagation.mp4 34.95Мб
7. Backpropagation.srt 4.46Кб
7. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 38.49Мб
7. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.srt 7.36Кб
7. Built-in Functions in Python.mp4 22.02Мб
7. Built-in Functions in Python.srt 4.21Кб
7. Business Case Load the Preprocessed Data - Exercise.html 79б
7. Business Case Model Outline.mp4 53.12Мб
7. Business Case Model Outline.srt 6.94Кб
7. Business Intelligence (BI) Techniques.mp4 89.94Мб
7. Business Intelligence (BI) Techniques.srt 8.63Кб
7. Categorical Variables Exercise.html 81б
7. Communication between Software Products through Text Files.mp4 60.35Мб
7. Communication between Software Products through Text Files.srt 5.47Кб
7. Conditional Statements, Functions, and Loops.mp4 9.49Мб
7. Conditional Statements, Functions, and Loops.srt 2.41Кб
7. Continuing with BI, ML, and AI.mp4 108.98Мб
7. Continuing with BI, ML, and AI.srt 11.87Кб
7. Creating a Summary Table with the Coefficients and Intercept.mp4 38.88Мб
7. Creating a Summary Table with the Coefficients and Intercept.srt 6.62Кб
7. Dictionaries.mp4 41.68Мб
7. Dictionaries.srt 8.43Кб
7. Discrete Distributions The Uniform Distribution.mp4 24.40Мб
7. Discrete Distributions The Uniform Distribution.srt 2.73Кб
7. Dropping a Column from a DataFrame in Python.mp4 61.77Мб
7. Dropping a Column from a DataFrame in Python.srt 7.81Кб
7. Dummy Variables - Exercise.html 713б
7. Events and Their Complements.mp4 59.15Мб
7. Events and Their Complements.srt 6.71Кб
7. How to Choose the Number of Clusters - Exercise.html 87б
7. Importing Modules in Python.mp4 19.94Мб
7. Importing Modules in Python.srt 4.81Кб
7. Installing Python and Jupyter.mp4 50.99Мб
7. Installing Python and Jupyter.srt 8.84Кб
7. Interpreting the Result and Extracting the Weights and Bias.mp4 30.27Мб
7. Interpreting the Result and Extracting the Weights and Bias.srt 6.23Кб
7. MNIST Batching and Early Stopping.mp4 12.85Мб
7. MNIST Batching and Early Stopping.srt 2.92Кб
7. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html 79б
7. Multiple Linear Regression with sklearn.mp4 20.08Мб
7. Multiple Linear Regression with sklearn.srt 4.17Кб
7. OLS Assumptions.mp4 21.85Мб
7. OLS Assumptions.srt 3.03Кб
7. Python Packages Installation.mp4 40.58Мб
7. Python Packages Installation.srt 5.62Кб
7. Solving Variations with Repetition.mp4 34.00Мб
7. Solving Variations with Repetition.srt 3.47Кб
7. Student's T Distribution.html 165б
7. The Linear Model (Linear Algebraic Version).mp4 28.44Мб
7. The Linear Model (Linear Algebraic Version).srt 3.88Кб
7. The Standard Normal Distribution.html 165б
7. Type I Error and Type II Error.html 165б
7. Understanding Logistic Regression Tables.mp4 30.55Мб
7. Understanding Logistic Regression Tables.srt 5.56Кб
7. Union of Sets.mp4 57.19Мб
7. Union of Sets.srt 5.53Кб
8.1 12.8. TensorFlow_MNIST_with_comments_Part_6.ipynb 11.50Кб
8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx 11.44Кб
8.1 3.11. Population variance unknown, t-score_lesson.xlsx 10.78Кб
8.1 3.4.Standard-normal-distribution-exercise.xlsx 11.99Кб
8.1 4.4. Test for the mean. Population variance known_lesson.xlsx 10.96Кб
8.1 5.5. TensorFlow_Minimal_example_Part_3.ipynb 8.65Кб
8.1 Iterating over Dictionaries - Lecture_Py3.ipynb 1.08Кб
8.1 Simple linear regression_with_comments.ipynb 4.06Кб
8.1 sklearn - Linear Regression - Practical Example (Part 5)_with_comments.ipynb 711.05Кб
8.1 sklearn - Multiple Linear Regression and Adjusted R-squared.ipynb 9.11Кб
8.1 TensorFlow_Audiobooks_Machine_Learning_Part2_with_comments.ipynb 19.69Кб
8.1 TensorFlow_Audiobooks_optimizing_the_algorithm_with_comments.ipynb 12.73Кб
8.1 TensorFlow_Minimal_example_complete_with_comments.ipynb 82.29Кб
8.1 TensorFlow_MNIST_Part4_with_comments.ipynb 10.49Кб
8.1 Tensors.ipynb 2.08Кб
8.1 Understanding Logistic Regression Tables - Solution.ipynb 4.79Кб
8.2 1.04. Real-life example.csv 219.83Кб
8.2 3.11. The t-table.xlsx 15.85Кб
8.2 3.4.Standard-normal-distribution-exercise-solution.xlsx 24.04Кб
8.2 Bank_data.csv 19.55Кб
8.2 Iterating over Dictionaries - Exercise_Py3.ipynb 2.19Кб
8.2 Simple linear regression.ipynb 3.79Кб
8.2 sklearn - Multiple Linear Regression and Adjusted R-squared_with_comments.ipynb 10.41Кб
8.2 TensorFlow_Audiobooks_optimizing_the_algorithm.ipynb 10.64Кб
8.2 TensorFlow_Minimal_example_complete.ipynb 76.85Кб
8.3 1.01. Simple linear regression.csv 922б
8.3 1.02. Multiple linear regression.csv 1.07Кб
8.3 Iterating over Dictionaries - Solution_Py3.ipynb 2.87Кб
8.3 sklearn - Linear Regression - Practical Example (Part 5).ipynb 698.36Кб
8.3 Understanding Logistic Regression Tables - Exercise.ipynb 3.16Кб
8. Add Comments.html 165б
8. Backpropagation Picture.mp4 19.51Мб
8. Backpropagation Picture.srt 3.97Кб
8. Basic NN Example with TF Loss Function and Gradient Descent.mp4 32.51Мб
8. Basic NN Example with TF Loss Function and Gradient Descent.srt 4.83Кб
8. Business Case Learning and Interpreting the Result.mp4 31.18Мб
8. Business Case Learning and Interpreting the Result.srt 6.27Кб
8. Business Case Optimization.mp4 41.52Мб
8. Business Case Optimization.srt 6.60Кб
8. Business Intelligence (BI) Techniques.html 165б
8. Calculating the Adjusted R-Squared in sklearn.mp4 30.88Мб
8. Calculating the Adjusted R-Squared in sklearn.srt 6.27Кб
8. Communication between Software Products through Text Files.html 165б
8. Confidence Intervals; Population Variance Unknown; T-score.mp4 32.20Мб
8. Confidence Intervals; Population Variance Unknown; T-score.srt 5.71Кб
8. Continuing with BI, ML, and AI.html 165б
8. Customizing a TensorFlow 2 Model.mp4 22.91Мб
8. Customizing a TensorFlow 2 Model.srt 4.11Кб
8. Dictionaries.html 165б
8. Discrete Distributions The Uniform Distribution.html 165б
8. Events and Their Complements.html 165б
8. EXERCISE - Dropping a Column from a DataFrame in Python.html 866б
8. First Regression in Python.mp4 44.56Мб
8. First Regression in Python.srt 7.91Кб
8. How to Iterate over Dictionaries.mp4 29.65Мб
8. How to Iterate over Dictionaries.srt 7.93Кб
8. Importing Modules in Python.html 165б
8. Interpreting the Coefficients for Our Problem.mp4 52.37Мб
8. Interpreting the Coefficients for Our Problem.srt 7.89Кб
8. MNIST Learning.mp4 46.68Мб
8. MNIST Learning.srt 10.19Кб
8. MNIST Outline the Model.mp4 28.23Мб
8. MNIST Outline the Model.srt 7.20Кб
8. Numerical Variables - Frequency Distribution Table.mp4 25.85Мб
8. Numerical Variables - Frequency Distribution Table.srt 4.36Кб
8. OLS Assumptions.html 165б
8. Practical Example Linear Regression (Part 5).mp4 57.88Мб
8. Practical Example Linear Regression (Part 5).srt 10.59Кб
8. Pros and Cons of K-Means Clustering.mp4 37.71Мб
8. Pros and Cons of K-Means Clustering.srt 4.61Кб
8. Python Functions.html 165б
8. Solving Variations with Repetition.html 165б
8. Test for the Mean. Population Variance Known.mp4 54.22Мб
8. Test for the Mean. Population Variance Known.srt 8.14Кб
8. The Linear Model.html 165б
8. The Standard Normal Distribution Exercise.html 81б
8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 13.80Мб
8. Understanding Jupyter's Interface - the Notebook Dashboard.srt 3.73Кб
8. Understanding Logistic Regression Tables - Exercise.html 87б
8. Union of Sets.html 165б
8. What is a Tensor.mp4 22.53Мб
8. What is a Tensor.srt 3.61Кб
9.1 1.02. Multiple linear regression.csv 1.07Кб
9.1 12.9. TensorFlow_MNIST_with_comments.ipynb 13.03Кб
9.1 3.11. Population variance unknown, t-score_exercise.xlsx 10.62Кб
9.1 365_DataScience.png 6.93Мб
9.1 4.4. Test for the mean. Population variance known_exercise.xlsx 11.03Кб
9.1 5.6. TensorFlow_Minimal_example_complete.ipynb 12.15Кб
9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 182.38Кб
9.1 Line Continuation - Lecture_Py3.ipynb 779б
9.1 Logistic Regression prior to Custom Scaler.html 219б
9.1 real_estate_price_size.csv 1.86Кб
9.1 TensorFlow_Audiobooks_Machine_Learning_Part3_with_comments.ipynb 10.06Кб
9.1 TensorFlow_Audiobooks_optimizing_the_algorithm.ipynb 10.64Кб
9.1 TensorFlow_Minimal_example_All_exercises.ipynb 83.62Кб
9.1 TensorFlow_MNIST_Part5_with_comments.ipynb 10.99Кб
9.2 3.11. Population variance unknown, t-score_exercise_solution.xlsx 11.10Кб
9.2 4.4. Test for the mean. Population variance known_exercise_solution.xlsx 11.22Кб
9.2 Line Continuation - Solution_Py3.ipynb 1.50Кб
9.2 Simple Linear Regression Exercise Solution.ipynb 3.57Кб
9.2 sklearn - Multiple Linear Regression and Adjusted R-squared - Exercise.ipynb 9.83Кб
9.2 TensorFlow_Audiobooks_optimizing_the_algorithm_with_comments.ipynb 12.73Кб
9.2 TensorFlow_Minimal_example_Exercise_1_Solution.ipynb 27.96Кб
9.3 3.11.The-t-table.xlsx 15.85Кб
9.3 Line Continuation - Exercise_Py3.ipynb 1.14Кб
9.3 Simple Linear Regression Exercise.ipynb 2.78Кб
9.3 sklearn - Multiple Linear Regression and Adjusted R-squared - Exercise Solution.ipynb 10.31Кб
9.3 TensorFlow_Minimal_Example_Exercise_2_1_Solution.ipynb 83.68Кб
9.4 TensorFlow_Minimal_Example_Exercise_2_2_Solution.ipynb 77.52Кб
9.5 TensorFlow_Minimal_Example_Exercise_3_Solution.ipynb 84.44Кб
9. A1 Linearity.mp4 12.61Мб
9. A1 Linearity.srt 2.36Кб
9. A Breakdown of our Data Science Infographic.mp4 67.74Мб
9. A Breakdown of our Data Science Infographic.srt 5.10Кб
9. Backpropagation - A Peek into the Mathematics of Optimization.html 539б
9. Basic NN Example with TF Model Output.mp4 37.39Мб
9. Basic NN Example with TF Model Output.srt 7.93Кб
9. Basic NN with TensorFlow Exercises.html 1.29Кб
9. Business Case Interpretation.mp4 25.75Мб
9. Business Case Interpretation.srt 2.94Кб
9. Business Case Setting an Early Stopping Mechanism.mp4 49.81Мб
9. Business Case Setting an Early Stopping Mechanism.srt 7.82Кб
9. Calculating the Adjusted R-Squared in sklearn - Exercise.html 76б
9. Central Limit Theorem.mp4 62.89Мб
9. Central Limit Theorem.srt 5.63Кб
9. Confidence Intervals; Population Variance Unknown; T-score; Exercise.html 81б
9. Discrete Distributions The Bernoulli Distribution.mp4 34.13Мб
9. Discrete Distributions The Bernoulli Distribution.srt 3.85Кб
9. First Regression in Python Exercise.html 1.33Кб
9. Linear Regression - Exercise.html 503б
9. MNIST Results and Testing.mp4 62.77Мб
9. MNIST Results and Testing.srt 8.17Кб
9. MNIST Select the Loss and the Optimizer.mp4 13.90Мб
9. MNIST Select the Loss and the Optimizer.srt 3.02Кб
9. Mutually Exclusive Sets.mp4 25.40Мб
9. Mutually Exclusive Sets.srt 2.52Кб
9. Numerical Variables - Frequency Distribution Table.html 165б
9. Prerequisites for Coding in the Jupyter Notebooks.mp4 30.58Мб
9. Prerequisites for Coding in the Jupyter Notebooks.srt 7.79Кб
9. Real Life Examples of Business Intelligence (BI).mp4 29.54Мб
9. Real Life Examples of Business Intelligence (BI).srt 2.13Кб
9. Software Integration - Explained.mp4 63.70Мб
9. Software Integration - Explained.srt 6.71Кб
9. SOLUTION - Dropping a Column from a DataFrame in Python.html 113б
9. Solving Variations without Repetition.mp4 43.14Мб
9. Solving Variations without Repetition.srt 4.53Кб
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 41.19Мб
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).srt 5.03Кб
9. Test for the Mean. Population Variance Known Exercise.html 81б
9. The Linear Model with Multiple Inputs.mp4 25.12Мб
9. The Linear Model with Multiple Inputs.srt 3.09Кб
9. To Standardize or not to Standardize.mp4 30.11Мб
9. To Standardize or not to Standardize.srt 5.88Кб
9. Understanding Line Continuation.mp4 2.35Мб
9. Understanding Line Continuation.srt 1.13Кб
9. What do the Odds Actually Mean.mp4 32.28Мб
9. What do the Odds Actually Mean.srt 4.79Кб
9. What is a Tensor.html 165б
Статистика распространения по странам
Турция (TR) 1
Франция (FR) 1
Всего 2
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент