Общая информация
Название Data Cleansing Master Class in Python
Тип
Размер 1.41Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 68б
001 Course Introduction.en.srt 2.82Кб
001 Course Introduction.mp4 22.61Мб
001 Curse of Dimensionality.en.srt 2.66Кб
001 Curse of Dimensionality.mp4 6.18Мб
001 Data Cleansing Overview.en.srt 2.15Кб
001 Data Cleansing Overview.mp4 20.01Мб
001 Feature Selection Introduction.en.srt 2.39Кб
001 Feature Selection Introduction.mp4 19.54Мб
001 Introducing Data Preparation.en.srt 2.80Кб
001 Introducing Data Preparation.mp4 36.45Мб
001 Scale Numerical Data.en.srt 2.72Кб
001 Scale Numerical Data.mp4 5.07Мб
001 Transforming Different Data Types.en.srt 3.15Кб
001 Transforming Different Data Types.mp4 8.89Мб
002 Course Structure.en.srt 3.57Кб
002 Course Structure.mp4 23.85Мб
002 Diabetes Dataset for Scaling.en.srt 2.46Кб
002 Diabetes Dataset for Scaling.mp4 8.68Мб
002 Feature Selection Defined.en.srt 4.38Кб
002 Feature Selection Defined.mp4 5.21Мб
002 Identify Columns That Contain a Single Value.en.srt 3.21Кб
002 Identify Columns That Contain a Single Value.mp4 7.49Мб
002 Techniques for Dimensionality Reduction.en.srt 4.91Кб
002 Techniques for Dimensionality Reduction.mp4 12.96Мб
002 The ColumnTransformer.en.srt 3.13Кб
002 The ColumnTransformer.mp4 10.49Мб
002 The Machine Learning Process.en.srt 5.40Кб
002 The Machine Learning Process.mp4 14.27Мб
003 Data Preparation Defined.en.srt 3.82Кб
003 Data Preparation Defined.mp4 30.23Мб
003 Identify Columns with Few Values.en.srt 4.23Кб
003 Identify Columns with Few Values.mp4 12.01Мб
003 Is this Course Right for You_.en.srt 1.74Кб
003 Is this Course Right for You_.mp4 1.59Мб
003 Linear Discriminant Analysis.en.srt 3.00Кб
003 Linear Discriminant Analysis.mp4 7.64Мб
003 MinMaxScaler Transform.en.srt 2.33Кб
003 MinMaxScaler Transform.mp4 8.94Мб
003 Statistics for Feature Selection.en.srt 2.97Кб
003 Statistics for Feature Selection.mp4 9.51Мб
003 The ColumnTransformer on Abalone Dataset.en.srt 3.70Кб
003 The ColumnTransformer on Abalone Dataset.mp4 13.06Мб
004 Choosing a Data Preparation Technique.en.srt 2.69Кб
004 Choosing a Data Preparation Technique.mp4 25.89Мб
004 Linear Discriminant Analysis Demonstrated.en.srt 5.30Кб
004 Linear Discriminant Analysis Demonstrated.mp4 18.64Мб
004 Loading a Categorical Dataset.en.srt 3.37Кб
004 Loading a Categorical Dataset.mp4 10.32Мб
004 Manually Transform Target Variable.en.srt 3.44Кб
004 Manually Transform Target Variable.mp4 13.23Мб
004 Remove Columns with Low Variance.en.srt 3.84Кб
004 Remove Columns with Low Variance.mp4 11.15Мб
004 StandardScaler Transform.en.srt 2.58Кб
004 StandardScaler Transform.mp4 10.49Мб
005 Automatically Transform Target Variable.en.srt 5.44Кб
005 Automatically Transform Target Variable.mp4 20.45Мб
005 Encode the Dataset for Modeling.en.srt 3.12Кб
005 Encode the Dataset for Modeling.mp4 9.43Мб
005 Identify and Remove Rows That Contain Duplicate Data.en.srt 3.92Кб
005 Identify and Remove Rows That Contain Duplicate Data.mp4 15.63Мб
005 Principal Component Analysis.en.srt 7.20Кб
005 Principal Component Analysis.mp4 22.64Мб
005 Robust Scaling Data.en.srt 5.58Кб
005 Robust Scaling Data.mp4 16.53Мб
005 What is Data in Machine Learning_.en.srt 4.74Кб
005 What is Data in Machine Learning_.mp4 17.88Мб
006 Challenge of Preparing New Data for a Model.en.srt 4.85Кб
006 Challenge of Preparing New Data for a Model.mp4 34.07Мб
006 Chi-Squared.en.srt 2.98Кб
006 Chi-Squared.mp4 7.02Мб
006 Defining Outliers.en.srt 2.68Кб
006 Defining Outliers.mp4 14.36Мб
006 Raw Data.en.srt 8.16Кб
006 Raw Data.mp4 20.51Мб
006 Robust Scaler Applied to Dataset.en.srt 2.16Кб
006 Robust Scaler Applied to Dataset.mp4 8.42Мб
007 Explore Robust Scaler Range.en.srt 1.61Кб
007 Explore Robust Scaler Range.mp4 5.62Мб
007 Machine Learning is Mostly Data Preparation.en.srt 4.11Кб
007 Machine Learning is Mostly Data Preparation.mp4 40.89Мб
007 Mutual Information.en.srt 2.18Кб
007 Mutual Information.mp4 6.92Мб
007 Remove Outliers - The Standard Deviation Approach.en.srt 5.41Кб
007 Remove Outliers - The Standard Deviation Approach.mp4 18.55Мб
007 Save Model and Data Scaler.en.srt 3.84Кб
007 Save Model and Data Scaler.mp4 15.23Мб
008 Common Data Preparation Tasks - Data Cleansing.en.srt 3.72Кб
008 Common Data Preparation Tasks - Data Cleansing.mp4 21.71Мб
008 Load and Apply Saved Scalers.en.srt 2.00Кб
008 Load and Apply Saved Scalers.mp4 6.60Мб
008 Modeling with Selected Categorical Features.en.srt 4.00Кб
008 Modeling with Selected Categorical Features.mp4 14.10Мб
008 Nominal and Ordinal Variables.en.srt 4.36Кб
008 Nominal and Ordinal Variables.mp4 25.96Мб
008 Remove Outliers - The IQR Approach.en.srt 3.77Кб
008 Remove Outliers - The IQR Approach.mp4 14.90Мб
009 Automatic Outlier Detection.en.srt 5.18Кб
009 Automatic Outlier Detection.mp4 18.60Мб
009 Common Data Preparation Tasks - Feature Selection.en.srt 3.53Кб
009 Common Data Preparation Tasks - Feature Selection.mp4 7.91Мб
009 Feature Selection with ANOVA on Numerical Input.en.srt 6.43Кб
009 Feature Selection with ANOVA on Numerical Input.mp4 17.22Мб
009 Ordinal Encoding.en.srt 3.30Кб
009 Ordinal Encoding.mp4 7.04Мб
010 Common Data Preparation Tasks - Data Transforms.en.srt 3.89Кб
010 Common Data Preparation Tasks - Data Transforms.mp4 4.69Мб
010 Feature Selection with Mutual Information.en.srt 2.70Кб
010 Feature Selection with Mutual Information.mp4 7.25Мб
010 Mark Missing Values.en.srt 6.84Кб
010 Mark Missing Values.mp4 22.68Мб
010 One-Hot Encoding Defined.en.srt 1.33Кб
010 One-Hot Encoding Defined.mp4 1.70Мб
011 Common Data Preparation Tasks - Feature Engineering.en.srt 2.16Кб
011 Common Data Preparation Tasks - Feature Engineering.mp4 21.57Мб
011 Modeling with Selected Numerical Features.en.srt 2.63Кб
011 Modeling with Selected Numerical Features.mp4 9.67Мб
011 One-Hot Encoding.en.srt 2.87Кб
011 One-Hot Encoding.mp4 6.84Мб
011 Remove Rows with Missing Values.en.srt 2.42Кб
011 Remove Rows with Missing Values.mp4 10.00Мб
012 Common Data Preparation Tasks - Dimensionality Reduction.en.srt 2.94Кб
012 Common Data Preparation Tasks - Dimensionality Reduction.mp4 4.07Мб
012 Dummy Variable Encoding.en.srt 3.09Кб
012 Dummy Variable Encoding.mp4 6.96Мб
012 Statistical Imputation.en.srt 1.97Кб
012 Statistical Imputation.mp4 2.59Мб
012 Tuning Number of Selected Features.en.srt 3.90Кб
012 Tuning Number of Selected Features.mp4 14.38Мб
013 Data Leakage.en.srt 1.14Кб
013 Data Leakage.mp4 8.82Мб
013 Mean Value Imputation.en.srt 4.95Кб
013 Mean Value Imputation.mp4 15.90Мб
013 OrdinalEncoder Transform on Breast Cancer Dataset.en.srt 5.01Кб
013 OrdinalEncoder Transform on Breast Cancer Dataset.mp4 17.13Мб
013 Select Features for Numerical Output.en.srt 3.38Кб
013 Select Features for Numerical Output.mp4 8.74Мб
014 Linear Correlation with Correlation Statistics.en.srt 3.29Кб
014 Linear Correlation with Correlation Statistics.mp4 9.91Мб
014 Make Distributions More Gaussian.en.srt 2.92Кб
014 Make Distributions More Gaussian.mp4 3.96Мб
014 Problem With Naïve Data Preparation.en.srt 5.24Кб
014 Problem With Naïve Data Preparation.mp4 24.85Мб
014 Simple Imputer with Model Evaluation.en.srt 1.82Кб
014 Simple Imputer with Model Evaluation.mp4 7.56Мб
015 Case Study_ Data Leakage_ Train_Test_Split Naïve Approach.en.srt 3.90Кб
015 Case Study_ Data Leakage_ Train_Test_Split Naïve Approach.mp4 16.53Мб
015 Compare Different Statistical Imputation Strategies.en.srt 2.52Кб
015 Compare Different Statistical Imputation Strategies.mp4 9.28Мб
015 Linear Correlation with Mutual Information.en.srt 3.07Кб
015 Linear Correlation with Mutual Information.mp4 10.83Мб
015 Power Transform on Contrived Dataset.en.srt 3.56Кб
015 Power Transform on Contrived Dataset.mp4 8.55Мб
016 Baseline and Model Built Using Correlation.en.srt 3.06Кб
016 Baseline and Model Built Using Correlation.mp4 13.13Мб
016 Case Study_ Data Leakage_ Train_Test_Split Correct Approach.en.srt 2.35Кб
016 Case Study_ Data Leakage_ Train_Test_Split Correct Approach.mp4 9.53Мб
016 K-Nearest Neighbors Imputation.en.srt 5.07Кб
016 K-Nearest Neighbors Imputation.mp4 16.87Мб
016 Power Transform on Sonar Dataset.en.srt 2.86Кб
016 Power Transform on Sonar Dataset.mp4 10.91Мб
017 Box-Cox on Sonar Dataset.en.srt 3.06Кб
017 Box-Cox on Sonar Dataset.mp4 11.71Мб
017 Case Study_ Data Leakage_ K-Fold Naïve Approach.en.srt 4.16Кб
017 Case Study_ Data Leakage_ K-Fold Naïve Approach.mp4 14.32Мб
017 KNNImputer and Model Evaluation.en.srt 3.42Кб
017 KNNImputer and Model Evaluation.mp4 12.87Мб
017 Model Built Using Mutual Information Features.en.srt 1.01Кб
017 Model Built Using Mutual Information Features.mp4 3.92Мб
018 Case Study_ Data Leakage_ K-Fold Correct Approach.en.srt 3.14Кб
018 Case Study_ Data Leakage_ K-Fold Correct Approach.mp4 12.76Мб
018 Data Cleansing Master Class - Data Preparation With Training and Testing Sets.zip 1.47Кб
018 Iterative Imputation.en.srt 4.10Кб
018 Iterative Imputation.mp4 13.82Мб
018 Tuning Number of Selected Features.en.srt 4.84Кб
018 Tuning Number of Selected Features.mp4 20.33Мб
018 Yeo-Johnson on Sonar Dataset.en.srt 2.67Кб
018 Yeo-Johnson on Sonar Dataset.mp4 9.62Мб
019 IterativeImputer and Model Evaluation.en.srt 1.45Кб
019 IterativeImputer and Model Evaluation.mp4 6.52Мб
019 Polynomial Features.en.srt 5.21Кб
019 Polynomial Features.mp4 20.67Мб
019 Recursive Feature Elimination.en.srt 3.76Кб
019 Recursive Feature Elimination.mp4 27.94Мб
020 IterativeImputer and Different Imputation Order.en.srt 2.18Кб
020 IterativeImputer and Different Imputation Order.mp4 8.41Мб
020 Polynomial Transform on Sonar Dataset.en.srt 5.21Кб
020 Polynomial Transform on Sonar Dataset.mp4 20.63Мб
020 RFE for Classification.en.srt 4.60Кб
020 RFE for Classification.mp4 18.49Мб
021 Effect of Polynomial Degrees.en.srt 2.71Кб
021 Effect of Polynomial Degrees.mp4 7.48Мб
021 RFE for Regression.en.srt 2.58Кб
021 RFE for Regression.mp4 9.40Мб
022 RFE Hyperparameters.en.srt 3.44Кб
022 RFE Hyperparameters.mp4 12.05Мб
023 Feature Ranking for RFE.en.srt 2.98Кб
023 Feature Ranking for RFE.mp4 10.93Мб
023 Sparse Column Identification and Removal.zip 10.15Кб
024 Feature Importance Scores Defined.en.srt 3.93Кб
024 Feature Importance Scores Defined.mp4 26.19Мб
025 Feature Importance Scores_ Linear Regression.en.srt 4.34Кб
025 Feature Importance Scores_ Linear Regression.mp4 13.29Мб
026 Feature Importance Scores_ Logistic Regression and CART.en.srt 4.43Кб
026 Feature Importance Scores_ Logistic Regression and CART.mp4 14.19Мб
026 Identify and Remove Duplicate Rows.zip 824б
027 Feature Importance Scores_ Random Forests.en.srt 1.95Кб
027 Feature Importance Scores_ Random Forests.mp4 6.59Мб
028 Outlier Removal - Standard Deviation Approach.zip 951б
028 Permutation Feature Importance.en.srt 3.09Кб
028 Permutation Feature Importance.mp4 10.78Мб
029 Feature Selection with Importance.en.srt 4.38Кб
029 Feature Selection with Importance.mp4 15.48Мб
029 Outlier Removal - IQR Approach.zip 920б
030 Automatic Outlier Detection.zip 1.20Кб
030 housing.csv 47.93Кб
031 Mark Missing Values.zip 2.58Кб
032 Remove Missing Values.zip 1.59Кб
034 Statistical Imputation With SimpleImputer.zip 1.72Кб
035 SimpleImputer and Model Evaluation.zip 1.02Кб
036 Comparing Different Imputed Statistics.zip 7.35Кб
037 Statistical Imputation With KNN.zip 1.69Кб
038 KNNImputer and Model Evaluation Different K-Values.zip 7.97Кб
039 IterativeImputer Data Transform.zip 997б
040 IterativeImputer and Model Evaluation.zip 1.05Кб
041 IterativeImputer and Different Number of Iterations.zip 8.28Кб
045 Categorical Feature Selection.zip 8.78Кб
050 Choosing Numerical Input Features.zip 15.60Кб
054 Select Features for Numerical Output.zip 17.82Кб
066 Feature Importance Scores.zip 26.95Кб
072 Data Rescaling .zip 25.02Кб
085 Power Transforms.zip 50.36Кб
089 Polynomial Feature Transform.zip 14.18Кб
092 Advanced Transforms.zip 6.12Кб
094 abalone.csv 187.38Кб
1 556б
10 326.50Кб
100 82.77Кб
100 Dimensionality Reduction.zip 18.51Кб
101 420.54Кб
102 309.33Кб
11 367.22Кб
12 402.71Кб
13 292.14Кб
14 442.24Кб
15 333.19Кб
16 380.35Кб
17 501.27Кб
18 55.92Кб
19 170.00Кб
2 281.87Кб
20 498.14Кб
21 474.19Кб
22 373.28Кб
23 404.84Кб
24 462.45Кб
25 5.36Кб
26 125.49Кб
27 282.09Кб
28 377.82Кб
29 136.45Кб
3 280.83Кб
30 478.65Кб
31 484.81Кб
32 104.88Кб
33 375.81Кб
34 24.76Кб
35 278.76Кб
36 97.42Кб
37 120.42Кб
38 140.53Кб
39 179.21Кб
4 59.71Кб
40 233.34Кб
41 319.63Кб
42 412.09Кб
43 186.61Кб
44 211.47Кб
45 280.39Кб
46 382.60Кб
47 449.02Кб
48 41.44Кб
49 136.97Кб
5 313.43Кб
50 245.75Кб
51 459.10Кб
52 505.90Кб
53 295.42Кб
54 353.54Кб
55 68.44Кб
56 89.68Кб
57 172.67Кб
58 225.58Кб
59 5.73Кб
6 42.12Кб
60 7.33Кб
61 187.23Кб
62 4.21Кб
63 91.57Кб
64 336.28Кб
65 389.93Кб
66 486.27Кб
67 499.05Кб
68 69.31Кб
69 101.20Кб
7 109.05Кб
70 229.68Кб
71 59.80Кб
72 111.30Кб
73 186.73Кб
74 262.25Кб
75 322.91Кб
76 464.60Кб
77 77.22Кб
78 93.38Кб
79 89.82Кб
8 153.57Кб
80 371.15Кб
81 450.20Кб
82 13.22Кб
83 20.31Кб
84 254.56Кб
85 470.17Кб
86 493.80Кб
87 38.90Кб
88 84.09Кб
89 160.75Кб
9 152.92Кб
90 408.67Кб
91 418.13Кб
92 491.90Кб
93 332.63Кб
94 392.58Кб
95 295.66Кб
96 435.50Кб
97 316.74Кб
98 445.41Кб
99 37.93Кб
TutsNode.com.txt 63б
Статистика распространения по странам
Беларусь (BY) 1
Россия (RU) 1
Швеция (SE) 1
Бразилия (BR) 1
Всего 4
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент