Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
68б |
001 Course Introduction.en.srt |
2.82Кб |
001 Course Introduction.mp4 |
22.61Мб |
001 Curse of Dimensionality.en.srt |
2.66Кб |
001 Curse of Dimensionality.mp4 |
6.18Мб |
001 Data Cleansing Overview.en.srt |
2.15Кб |
001 Data Cleansing Overview.mp4 |
20.01Мб |
001 Feature Selection Introduction.en.srt |
2.39Кб |
001 Feature Selection Introduction.mp4 |
19.54Мб |
001 Introducing Data Preparation.en.srt |
2.80Кб |
001 Introducing Data Preparation.mp4 |
36.45Мб |
001 Scale Numerical Data.en.srt |
2.72Кб |
001 Scale Numerical Data.mp4 |
5.07Мб |
001 Transforming Different Data Types.en.srt |
3.15Кб |
001 Transforming Different Data Types.mp4 |
8.89Мб |
002 Course Structure.en.srt |
3.57Кб |
002 Course Structure.mp4 |
23.85Мб |
002 Diabetes Dataset for Scaling.en.srt |
2.46Кб |
002 Diabetes Dataset for Scaling.mp4 |
8.68Мб |
002 Feature Selection Defined.en.srt |
4.38Кб |
002 Feature Selection Defined.mp4 |
5.21Мб |
002 Identify Columns That Contain a Single Value.en.srt |
3.21Кб |
002 Identify Columns That Contain a Single Value.mp4 |
7.49Мб |
002 Techniques for Dimensionality Reduction.en.srt |
4.91Кб |
002 Techniques for Dimensionality Reduction.mp4 |
12.96Мб |
002 The ColumnTransformer.en.srt |
3.13Кб |
002 The ColumnTransformer.mp4 |
10.49Мб |
002 The Machine Learning Process.en.srt |
5.40Кб |
002 The Machine Learning Process.mp4 |
14.27Мб |
003 Data Preparation Defined.en.srt |
3.82Кб |
003 Data Preparation Defined.mp4 |
30.23Мб |
003 Identify Columns with Few Values.en.srt |
4.23Кб |
003 Identify Columns with Few Values.mp4 |
12.01Мб |
003 Is this Course Right for You_.en.srt |
1.74Кб |
003 Is this Course Right for You_.mp4 |
1.59Мб |
003 Linear Discriminant Analysis.en.srt |
3.00Кб |
003 Linear Discriminant Analysis.mp4 |
7.64Мб |
003 MinMaxScaler Transform.en.srt |
2.33Кб |
003 MinMaxScaler Transform.mp4 |
8.94Мб |
003 Statistics for Feature Selection.en.srt |
2.97Кб |
003 Statistics for Feature Selection.mp4 |
9.51Мб |
003 The ColumnTransformer on Abalone Dataset.en.srt |
3.70Кб |
003 The ColumnTransformer on Abalone Dataset.mp4 |
13.06Мб |
004 Choosing a Data Preparation Technique.en.srt |
2.69Кб |
004 Choosing a Data Preparation Technique.mp4 |
25.89Мб |
004 Linear Discriminant Analysis Demonstrated.en.srt |
5.30Кб |
004 Linear Discriminant Analysis Demonstrated.mp4 |
18.64Мб |
004 Loading a Categorical Dataset.en.srt |
3.37Кб |
004 Loading a Categorical Dataset.mp4 |
10.32Мб |
004 Manually Transform Target Variable.en.srt |
3.44Кб |
004 Manually Transform Target Variable.mp4 |
13.23Мб |
004 Remove Columns with Low Variance.en.srt |
3.84Кб |
004 Remove Columns with Low Variance.mp4 |
11.15Мб |
004 StandardScaler Transform.en.srt |
2.58Кб |
004 StandardScaler Transform.mp4 |
10.49Мб |
005 Automatically Transform Target Variable.en.srt |
5.44Кб |
005 Automatically Transform Target Variable.mp4 |
20.45Мб |
005 Encode the Dataset for Modeling.en.srt |
3.12Кб |
005 Encode the Dataset for Modeling.mp4 |
9.43Мб |
005 Identify and Remove Rows That Contain Duplicate Data.en.srt |
3.92Кб |
005 Identify and Remove Rows That Contain Duplicate Data.mp4 |
15.63Мб |
005 Principal Component Analysis.en.srt |
7.20Кб |
005 Principal Component Analysis.mp4 |
22.64Мб |
005 Robust Scaling Data.en.srt |
5.58Кб |
005 Robust Scaling Data.mp4 |
16.53Мб |
005 What is Data in Machine Learning_.en.srt |
4.74Кб |
005 What is Data in Machine Learning_.mp4 |
17.88Мб |
006 Challenge of Preparing New Data for a Model.en.srt |
4.85Кб |
006 Challenge of Preparing New Data for a Model.mp4 |
34.07Мб |
006 Chi-Squared.en.srt |
2.98Кб |
006 Chi-Squared.mp4 |
7.02Мб |
006 Defining Outliers.en.srt |
2.68Кб |
006 Defining Outliers.mp4 |
14.36Мб |
006 Raw Data.en.srt |
8.16Кб |
006 Raw Data.mp4 |
20.51Мб |
006 Robust Scaler Applied to Dataset.en.srt |
2.16Кб |
006 Robust Scaler Applied to Dataset.mp4 |
8.42Мб |
007 Explore Robust Scaler Range.en.srt |
1.61Кб |
007 Explore Robust Scaler Range.mp4 |
5.62Мб |
007 Machine Learning is Mostly Data Preparation.en.srt |
4.11Кб |
007 Machine Learning is Mostly Data Preparation.mp4 |
40.89Мб |
007 Mutual Information.en.srt |
2.18Кб |
007 Mutual Information.mp4 |
6.92Мб |
007 Remove Outliers - The Standard Deviation Approach.en.srt |
5.41Кб |
007 Remove Outliers - The Standard Deviation Approach.mp4 |
18.55Мб |
007 Save Model and Data Scaler.en.srt |
3.84Кб |
007 Save Model and Data Scaler.mp4 |
15.23Мб |
008 Common Data Preparation Tasks - Data Cleansing.en.srt |
3.72Кб |
008 Common Data Preparation Tasks - Data Cleansing.mp4 |
21.71Мб |
008 Load and Apply Saved Scalers.en.srt |
2.00Кб |
008 Load and Apply Saved Scalers.mp4 |
6.60Мб |
008 Modeling with Selected Categorical Features.en.srt |
4.00Кб |
008 Modeling with Selected Categorical Features.mp4 |
14.10Мб |
008 Nominal and Ordinal Variables.en.srt |
4.36Кб |
008 Nominal and Ordinal Variables.mp4 |
25.96Мб |
008 Remove Outliers - The IQR Approach.en.srt |
3.77Кб |
008 Remove Outliers - The IQR Approach.mp4 |
14.90Мб |
009 Automatic Outlier Detection.en.srt |
5.18Кб |
009 Automatic Outlier Detection.mp4 |
18.60Мб |
009 Common Data Preparation Tasks - Feature Selection.en.srt |
3.53Кб |
009 Common Data Preparation Tasks - Feature Selection.mp4 |
7.91Мб |
009 Feature Selection with ANOVA on Numerical Input.en.srt |
6.43Кб |
009 Feature Selection with ANOVA on Numerical Input.mp4 |
17.22Мб |
009 Ordinal Encoding.en.srt |
3.30Кб |
009 Ordinal Encoding.mp4 |
7.04Мб |
010 Common Data Preparation Tasks - Data Transforms.en.srt |
3.89Кб |
010 Common Data Preparation Tasks - Data Transforms.mp4 |
4.69Мб |
010 Feature Selection with Mutual Information.en.srt |
2.70Кб |
010 Feature Selection with Mutual Information.mp4 |
7.25Мб |
010 Mark Missing Values.en.srt |
6.84Кб |
010 Mark Missing Values.mp4 |
22.68Мб |
010 One-Hot Encoding Defined.en.srt |
1.33Кб |
010 One-Hot Encoding Defined.mp4 |
1.70Мб |
011 Common Data Preparation Tasks - Feature Engineering.en.srt |
2.16Кб |
011 Common Data Preparation Tasks - Feature Engineering.mp4 |
21.57Мб |
011 Modeling with Selected Numerical Features.en.srt |
2.63Кб |
011 Modeling with Selected Numerical Features.mp4 |
9.67Мб |
011 One-Hot Encoding.en.srt |
2.87Кб |
011 One-Hot Encoding.mp4 |
6.84Мб |
011 Remove Rows with Missing Values.en.srt |
2.42Кб |
011 Remove Rows with Missing Values.mp4 |
10.00Мб |
012 Common Data Preparation Tasks - Dimensionality Reduction.en.srt |
2.94Кб |
012 Common Data Preparation Tasks - Dimensionality Reduction.mp4 |
4.07Мб |
012 Dummy Variable Encoding.en.srt |
3.09Кб |
012 Dummy Variable Encoding.mp4 |
6.96Мб |
012 Statistical Imputation.en.srt |
1.97Кб |
012 Statistical Imputation.mp4 |
2.59Мб |
012 Tuning Number of Selected Features.en.srt |
3.90Кб |
012 Tuning Number of Selected Features.mp4 |
14.38Мб |
013 Data Leakage.en.srt |
1.14Кб |
013 Data Leakage.mp4 |
8.82Мб |
013 Mean Value Imputation.en.srt |
4.95Кб |
013 Mean Value Imputation.mp4 |
15.90Мб |
013 OrdinalEncoder Transform on Breast Cancer Dataset.en.srt |
5.01Кб |
013 OrdinalEncoder Transform on Breast Cancer Dataset.mp4 |
17.13Мб |
013 Select Features for Numerical Output.en.srt |
3.38Кб |
013 Select Features for Numerical Output.mp4 |
8.74Мб |
014 Linear Correlation with Correlation Statistics.en.srt |
3.29Кб |
014 Linear Correlation with Correlation Statistics.mp4 |
9.91Мб |
014 Make Distributions More Gaussian.en.srt |
2.92Кб |
014 Make Distributions More Gaussian.mp4 |
3.96Мб |
014 Problem With Naïve Data Preparation.en.srt |
5.24Кб |
014 Problem With Naïve Data Preparation.mp4 |
24.85Мб |
014 Simple Imputer with Model Evaluation.en.srt |
1.82Кб |
014 Simple Imputer with Model Evaluation.mp4 |
7.56Мб |
015 Case Study_ Data Leakage_ Train_Test_Split Naïve Approach.en.srt |
3.90Кб |
015 Case Study_ Data Leakage_ Train_Test_Split Naïve Approach.mp4 |
16.53Мб |
015 Compare Different Statistical Imputation Strategies.en.srt |
2.52Кб |
015 Compare Different Statistical Imputation Strategies.mp4 |
9.28Мб |
015 Linear Correlation with Mutual Information.en.srt |
3.07Кб |
015 Linear Correlation with Mutual Information.mp4 |
10.83Мб |
015 Power Transform on Contrived Dataset.en.srt |
3.56Кб |
015 Power Transform on Contrived Dataset.mp4 |
8.55Мб |
016 Baseline and Model Built Using Correlation.en.srt |
3.06Кб |
016 Baseline and Model Built Using Correlation.mp4 |
13.13Мб |
016 Case Study_ Data Leakage_ Train_Test_Split Correct Approach.en.srt |
2.35Кб |
016 Case Study_ Data Leakage_ Train_Test_Split Correct Approach.mp4 |
9.53Мб |
016 K-Nearest Neighbors Imputation.en.srt |
5.07Кб |
016 K-Nearest Neighbors Imputation.mp4 |
16.87Мб |
016 Power Transform on Sonar Dataset.en.srt |
2.86Кб |
016 Power Transform on Sonar Dataset.mp4 |
10.91Мб |
017 Box-Cox on Sonar Dataset.en.srt |
3.06Кб |
017 Box-Cox on Sonar Dataset.mp4 |
11.71Мб |
017 Case Study_ Data Leakage_ K-Fold Naïve Approach.en.srt |
4.16Кб |
017 Case Study_ Data Leakage_ K-Fold Naïve Approach.mp4 |
14.32Мб |
017 KNNImputer and Model Evaluation.en.srt |
3.42Кб |
017 KNNImputer and Model Evaluation.mp4 |
12.87Мб |
017 Model Built Using Mutual Information Features.en.srt |
1.01Кб |
017 Model Built Using Mutual Information Features.mp4 |
3.92Мб |
018 Case Study_ Data Leakage_ K-Fold Correct Approach.en.srt |
3.14Кб |
018 Case Study_ Data Leakage_ K-Fold Correct Approach.mp4 |
12.76Мб |
018 Data Cleansing Master Class - Data Preparation With Training and Testing Sets.zip |
1.47Кб |
018 Iterative Imputation.en.srt |
4.10Кб |
018 Iterative Imputation.mp4 |
13.82Мб |
018 Tuning Number of Selected Features.en.srt |
4.84Кб |
018 Tuning Number of Selected Features.mp4 |
20.33Мб |
018 Yeo-Johnson on Sonar Dataset.en.srt |
2.67Кб |
018 Yeo-Johnson on Sonar Dataset.mp4 |
9.62Мб |
019 IterativeImputer and Model Evaluation.en.srt |
1.45Кб |
019 IterativeImputer and Model Evaluation.mp4 |
6.52Мб |
019 Polynomial Features.en.srt |
5.21Кб |
019 Polynomial Features.mp4 |
20.67Мб |
019 Recursive Feature Elimination.en.srt |
3.76Кб |
019 Recursive Feature Elimination.mp4 |
27.94Мб |
020 IterativeImputer and Different Imputation Order.en.srt |
2.18Кб |
020 IterativeImputer and Different Imputation Order.mp4 |
8.41Мб |
020 Polynomial Transform on Sonar Dataset.en.srt |
5.21Кб |
020 Polynomial Transform on Sonar Dataset.mp4 |
20.63Мб |
020 RFE for Classification.en.srt |
4.60Кб |
020 RFE for Classification.mp4 |
18.49Мб |
021 Effect of Polynomial Degrees.en.srt |
2.71Кб |
021 Effect of Polynomial Degrees.mp4 |
7.48Мб |
021 RFE for Regression.en.srt |
2.58Кб |
021 RFE for Regression.mp4 |
9.40Мб |
022 RFE Hyperparameters.en.srt |
3.44Кб |
022 RFE Hyperparameters.mp4 |
12.05Мб |
023 Feature Ranking for RFE.en.srt |
2.98Кб |
023 Feature Ranking for RFE.mp4 |
10.93Мб |
023 Sparse Column Identification and Removal.zip |
10.15Кб |
024 Feature Importance Scores Defined.en.srt |
3.93Кб |
024 Feature Importance Scores Defined.mp4 |
26.19Мб |
025 Feature Importance Scores_ Linear Regression.en.srt |
4.34Кб |
025 Feature Importance Scores_ Linear Regression.mp4 |
13.29Мб |
026 Feature Importance Scores_ Logistic Regression and CART.en.srt |
4.43Кб |
026 Feature Importance Scores_ Logistic Regression and CART.mp4 |
14.19Мб |
026 Identify and Remove Duplicate Rows.zip |
824б |
027 Feature Importance Scores_ Random Forests.en.srt |
1.95Кб |
027 Feature Importance Scores_ Random Forests.mp4 |
6.59Мб |
028 Outlier Removal - Standard Deviation Approach.zip |
951б |
028 Permutation Feature Importance.en.srt |
3.09Кб |
028 Permutation Feature Importance.mp4 |
10.78Мб |
029 Feature Selection with Importance.en.srt |
4.38Кб |
029 Feature Selection with Importance.mp4 |
15.48Мб |
029 Outlier Removal - IQR Approach.zip |
920б |
030 Automatic Outlier Detection.zip |
1.20Кб |
030 housing.csv |
47.93Кб |
031 Mark Missing Values.zip |
2.58Кб |
032 Remove Missing Values.zip |
1.59Кб |
034 Statistical Imputation With SimpleImputer.zip |
1.72Кб |
035 SimpleImputer and Model Evaluation.zip |
1.02Кб |
036 Comparing Different Imputed Statistics.zip |
7.35Кб |
037 Statistical Imputation With KNN.zip |
1.69Кб |
038 KNNImputer and Model Evaluation Different K-Values.zip |
7.97Кб |
039 IterativeImputer Data Transform.zip |
997б |
040 IterativeImputer and Model Evaluation.zip |
1.05Кб |
041 IterativeImputer and Different Number of Iterations.zip |
8.28Кб |
045 Categorical Feature Selection.zip |
8.78Кб |
050 Choosing Numerical Input Features.zip |
15.60Кб |
054 Select Features for Numerical Output.zip |
17.82Кб |
066 Feature Importance Scores.zip |
26.95Кб |
072 Data Rescaling .zip |
25.02Кб |
085 Power Transforms.zip |
50.36Кб |
089 Polynomial Feature Transform.zip |
14.18Кб |
092 Advanced Transforms.zip |
6.12Кб |
094 abalone.csv |
187.38Кб |
1 |
556б |
10 |
326.50Кб |
100 |
82.77Кб |
100 Dimensionality Reduction.zip |
18.51Кб |
101 |
420.54Кб |
102 |
309.33Кб |
11 |
367.22Кб |
12 |
402.71Кб |
13 |
292.14Кб |
14 |
442.24Кб |
15 |
333.19Кб |
16 |
380.35Кб |
17 |
501.27Кб |
18 |
55.92Кб |
19 |
170.00Кб |
2 |
281.87Кб |
20 |
498.14Кб |
21 |
474.19Кб |
22 |
373.28Кб |
23 |
404.84Кб |
24 |
462.45Кб |
25 |
5.36Кб |
26 |
125.49Кб |
27 |
282.09Кб |
28 |
377.82Кб |
29 |
136.45Кб |
3 |
280.83Кб |
30 |
478.65Кб |
31 |
484.81Кб |
32 |
104.88Кб |
33 |
375.81Кб |
34 |
24.76Кб |
35 |
278.76Кб |
36 |
97.42Кб |
37 |
120.42Кб |
38 |
140.53Кб |
39 |
179.21Кб |
4 |
59.71Кб |
40 |
233.34Кб |
41 |
319.63Кб |
42 |
412.09Кб |
43 |
186.61Кб |
44 |
211.47Кб |
45 |
280.39Кб |
46 |
382.60Кб |
47 |
449.02Кб |
48 |
41.44Кб |
49 |
136.97Кб |
5 |
313.43Кб |
50 |
245.75Кб |
51 |
459.10Кб |
52 |
505.90Кб |
53 |
295.42Кб |
54 |
353.54Кб |
55 |
68.44Кб |
56 |
89.68Кб |
57 |
172.67Кб |
58 |
225.58Кб |
59 |
5.73Кб |
6 |
42.12Кб |
60 |
7.33Кб |
61 |
187.23Кб |
62 |
4.21Кб |
63 |
91.57Кб |
64 |
336.28Кб |
65 |
389.93Кб |
66 |
486.27Кб |
67 |
499.05Кб |
68 |
69.31Кб |
69 |
101.20Кб |
7 |
109.05Кб |
70 |
229.68Кб |
71 |
59.80Кб |
72 |
111.30Кб |
73 |
186.73Кб |
74 |
262.25Кб |
75 |
322.91Кб |
76 |
464.60Кб |
77 |
77.22Кб |
78 |
93.38Кб |
79 |
89.82Кб |
8 |
153.57Кб |
80 |
371.15Кб |
81 |
450.20Кб |
82 |
13.22Кб |
83 |
20.31Кб |
84 |
254.56Кб |
85 |
470.17Кб |
86 |
493.80Кб |
87 |
38.90Кб |
88 |
84.09Кб |
89 |
160.75Кб |
9 |
152.92Кб |
90 |
408.67Кб |
91 |
418.13Кб |
92 |
491.90Кб |
93 |
332.63Кб |
94 |
392.58Кб |
95 |
295.66Кб |
96 |
435.50Кб |
97 |
316.74Кб |
98 |
445.41Кб |
99 |
37.93Кб |
TutsNode.com.txt |
63б |