Общая информация
Название [GigaCourse.Com] Udemy - 2022 Python for Machine Learning & Data Science Masterclass
Тип
Размер 11.49Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
001 A note from Jose on Feature Engineering and Data Preparation.html 990б
001 Capstone Project Overview__en.srt 20.60Кб
001 Capstone Project Overview.mp4 31.11Мб
001 Early Bird Note on Downloading .zip for Logistic Regression Notes.html 523б
001 Introduction to Boosting Section__en.srt 2.67Кб
001 Introduction to Boosting Section.mp4 2.99Мб
001 Introduction to DBSCAN Section__en.srt 1.34Кб
001 Introduction to DBSCAN Section.mp4 1.80Мб
001 Introduction to Hierarchical Clustering__en.srt 1.17Кб
001 Introduction to Hierarchical Clustering.mp4 1.67Мб
001 Introduction to K-Means Clustering Section__en.srt 3.50Кб
001 Introduction to K-Means Clustering Section.mp4 3.55Мб
001 Introduction to KNN Section__en.srt 3.63Кб
001 Introduction to KNN Section.mp4 3.65Мб
001 Introduction to Linear Regression Section__en.srt 2.68Кб
001 Introduction to Linear Regression Section.mp4 2.58Мб
001 Introduction to Machine Learning Overview Section__en.srt 8.58Кб
001 Introduction to Machine Learning Overview Section.mp4 13.17Мб
001 Introduction to Matplotlib__en.srt 6.72Кб
001 Introduction to Matplotlib.mp4 6.55Мб
001 Introduction to NLP and Naive Bayes Section__en.srt 3.69Кб
001 Introduction to NLP and Naive Bayes Section.mp4 4.22Мб
001 Introduction to NumPy__en.srt 3.01Кб
001 Introduction to NumPy.mp4 3.37Мб
001 Introduction to Pandas__en.srt 7.24Кб
001 Introduction to Pandas.mp4 6.70Мб
001 Introduction to Principal Component Analysis__en.srt 3.97Кб
001 Introduction to Principal Component Analysis.mp4 5.08Мб
001 Introduction to Random Forests Section__en.srt 2.81Кб
001 Introduction to Random Forests Section.mp4 2.87Мб
001 Introduction to Seaborn__en.srt 6.51Кб
001 Introduction to Seaborn.mp4 5.74Мб
001 Introduction to Supervised Learning Capstone Project__en.srt 25.69Кб
001 Introduction to Supervised Learning Capstone Project.mp4 29.84Мб
001 Introduction to Support Vector Machines__en.srt 2.30Кб
001 Introduction to Support Vector Machines.mp4 2.79Мб
001 Introduction to Tree Based Methods__en.srt 2.21Кб
001 Introduction to Tree Based Methods.mp4 2.33Мб
001 Machine Learning Pathway__en.srt 15.79Кб
001 Machine Learning Pathway.mp4 14.10Мб
001 Model Deployment Section Overview__en.srt 3.49Кб
001 Model Deployment Section Overview.mp4 4.16Мб
001 OPTIONAL_ Python Crash Course.html 472б
001 Section Overview and Introduction__en.srt 5.05Кб
001 Section Overview and Introduction.mp4 5.61Мб
001 Unsupervised Learning Overview__en.srt 12.86Кб
001 Unsupervised Learning Overview.mp4 13.75Мб
001 Welcome to the Course_.html 1.64Кб
002 Boosting Methods - Motivation and History__en.srt 8.96Кб
002 Boosting Methods - Motivation and History.mp4 21.98Мб
002 Capstone Project Solutions - Part One__en.srt 26.84Кб
002 Capstone Project Solutions - Part One.mp4 110.61Мб
002 Clustering General Overview__en.srt 16.50Кб
002 Clustering General Overview.mp4 24.86Мб
002 COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP___en.srt 7.16Кб
002 COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP_.mp4 7.22Мб
002 Cross Validation - Test _ Train Split__en.srt 17.43Кб
002 Cross Validation - Test _ Train Split.mp4 46.86Мб
002 DBSCAN - Theory and Intuition__en.srt 26.51Кб
002 DBSCAN - Theory and Intuition.mp4 109.09Мб
002 Decision Tree - History__en.srt 13.15Кб
002 Decision Tree - History.mp4 35.58Мб
002 Hierarchical Clustering - Theory and Intuition__en.srt 17.29Кб
002 Hierarchical Clustering - Theory and Intuition.mp4 52.07Мб
002 History of Support Vector Machines__en.srt 6.53Кб
002 History of Support Vector Machines.mp4 15.54Мб
002 Introduction to Feature Engineering and Data Preparation__en.srt 24.10Кб
002 Introduction to Feature Engineering and Data Preparation.mp4 36.11Мб
002 Introduction to Logistic Regression Section__en.srt 8.39Кб
002 Introduction to Logistic Regression Section.mp4 13.93Мб
002 KNN Classification - Theory and Intuition__en.srt 16.93Кб
002 KNN Classification - Theory and Intuition.mp4 23.55Мб
002 Linear Regression - Algorithm History__en.srt 13.09Кб
002 Linear Regression - Algorithm History.mp4 54.82Мб
002 Matplotlib Basics__en.srt 19.64Кб
002 Matplotlib Basics.mp4 31.07Мб
002 Model Deployment Considerations__en.srt 10.57Кб
002 Model Deployment Considerations.mp4 18.31Мб
002 Naive Bayes Algorithm - Part One - Bayes Theorem__en.srt 11.85Кб
002 Naive Bayes Algorithm - Part One - Bayes Theorem.mp4 22.04Мб
002 NumPy Arrays__en.srt 31.91Кб
002 NumPy Arrays.mp4 99.45Мб
002 PCA Theory and Intuition - Part One__en.srt 15.60Кб
002 PCA Theory and Intuition - Part One.mp4 29.72Мб
002 Python Crash Course - Part One__en.srt 24.63Кб
002 Python Crash Course - Part One.mp4 29.74Мб
002 Random Forests - History and Motivation__en.srt 17.22Кб
002 Random Forests - History and Motivation.mp4 24.00Мб
002 Scatterplots with Seaborn__en.srt 29.72Кб
002 Scatterplots with Seaborn.mp4 111.30Мб
002 Series - Part One__en.srt 13.39Кб
002 Series - Part One.mp4 28.62Мб
002 Solution Walkthrough - Supervised Learning Project - Data and EDA__en.srt 29.67Кб
002 Solution Walkthrough - Supervised Learning Project - Data and EDA.mp4 106.10Мб
002 Why Machine Learning___en.srt 14.66Кб
002 Why Machine Learning_.mp4 21.04Мб
003 AdaBoost Theory and Intuition__en.srt 28.95Кб
003 AdaBoost Theory and Intuition.mp4 41.53Мб
003 Anaconda Python and Jupyter Install and Setup__en.srt 21.55Кб
003 Anaconda Python and Jupyter Install and Setup.mp4 84.53Мб
003 Capstone Project Solutions - Part Two__en.srt 23.48Кб
003 Capstone Project Solutions - Part Two.mp4 106.18Мб
003 Cross Validation - Test _ Validation _ Train Split__en.srt 21.65Кб
003 Cross Validation - Test _ Validation _ Train Split.mp4 59.41Мб
003 DBSCAN versus K-Means Clustering__en.srt 17.37Кб
003 DBSCAN versus K-Means Clustering.mp4 66.64Мб
003 Dealing with Outliers__en.srt 41.20Кб
003 Dealing with Outliers.mp4 103.32Мб
003 Decision Tree - Terminology__en.srt 6.43Кб
003 Decision Tree - Terminology.mp4 7.29Мб
003 Distribution Plots - Part One - Understanding Plot Types__en.srt 15.00Кб
003 Distribution Plots - Part One - Understanding Plot Types.mp4 15.03Мб
003 Hierarchical Clustering - Coding Part One - Data and Visualization__en.srt 25.38Кб
003 Hierarchical Clustering - Coding Part One - Data and Visualization.mp4 114.98Мб
003 K-Means Clustering Theory__en.srt 17.25Кб
003 K-Means Clustering Theory.mp4 52.49Мб
003 KNN Coding with Python - Part One__en.srt 10.99Кб
003 KNN Coding with Python - Part One_en.vtt 19.38Кб
003 KNN Coding with Python - Part One.mp4 61.55Мб
003 Linear Regression - Understanding Ordinary Least Squares__en.srt 22.53Кб
003 Linear Regression - Understanding Ordinary Least Squares.mp4 86.37Мб
003 Logistic Regression - Theory and Intuition - Part One_ The Logistic Function__en.srt 8.09Кб
003 Logistic Regression - Theory and Intuition - Part One_ The Logistic Function.mp4 17.31Мб
003 Matplotlib - Understanding the Figure Object__en.srt 11.55Кб
003 Matplotlib - Understanding the Figure Object.mp4 11.70Мб
003 Model Persistence__en.srt 3.07Кб
003 Model Persistence_en.vtt 28.11Кб
003 Model Persistence.mp4 109.76Мб
003 Naive Bayes Algorithm - Part Two - Model Algorithm__en.srt 26.35Кб
003 Naive Bayes Algorithm - Part Two - Model Algorithm.mp4 48.61Мб
003 NumPy Indexing and Selection__en.srt 16.22Кб
003 NumPy Indexing and Selection.mp4 39.63Мб
003 PCA Theory and Intuition - Part Two__en.srt 16.36Кб
003 PCA Theory and Intuition - Part Two.mp4 19.04Мб
003 Python Crash Course - Part Two__en.srt 18.03Кб
003 Python Crash Course - Part Two.mp4 57.63Мб
003 Random Forests - Key Hyperparameters__en.srt 4.45Кб
003 Random Forests - Key Hyperparameters.mp4 8.27Мб
003 Series - Part Two__en.srt 15.38Кб
003 Series - Part Two.mp4 26.12Мб
003 Solution Walkthrough - Supervised Learning Project - Cohort Analysis__en.srt 38.72Кб
003 Solution Walkthrough - Supervised Learning Project - Cohort Analysis.mp4 130.14Мб
003 SVM - Theory and Intuition - Hyperplanes and Margins__en.srt 18.58Кб
003 SVM - Theory and Intuition - Hyperplanes and Margins.mp4 47.74Мб
003 Types of Machine Learning Algorithms__en.srt 11.63Кб
003 Types of Machine Learning Algorithms.mp4 18.08Мб
004 AdaBoost Coding Part One - The Data__en.srt 16.66Кб
004 AdaBoost Coding Part One - The Data.mp4 42.25Мб
004 Capstone Project Solutions - Part Three__en.srt 30.88Кб
004 Capstone Project Solutions - Part Three.mp4 137.39Мб
004 Cross Validation - cross_val_score__en.srt 8.14Кб
004 Cross Validation - cross_val_score_en.vtt 15.20Кб
004 Cross Validation - cross_val_score.mp4 44.46Мб
004 DataFrames - Part One - Creating a DataFrame__en.srt 29.00Кб
004 DataFrames - Part One - Creating a DataFrame.mp4 97.48Мб
004 DBSCAN - Hyperparameter Theory__en.srt 10.70Кб
004 DBSCAN - Hyperparameter Theory.mp4 13.86Мб
004 Dealing with Missing Data _ Part One - Evaluation of Missing Data__en.srt 16.97Кб
004 Dealing with Missing Data _ Part One - Evaluation of Missing Data.mp4 19.05Мб
004 Decision Tree - Understanding Gini Impurity__en.srt 11.11Кб
004 Decision Tree - Understanding Gini Impurity.mp4 19.45Мб
004 Distribution Plots - Part Two - Coding with Seaborn__en.srt 24.79Кб
004 Distribution Plots - Part Two - Coding with Seaborn.mp4 59.21Мб
004 Feature Extraction from Text - Part One - Theory and Intuition__en.srt 16.04Кб
004 Feature Extraction from Text - Part One - Theory and Intuition.mp4 29.40Мб
004 Hierarchical Clustering - Coding Part Two - Scikit-Learn__en.srt 42.26Кб
004 Hierarchical Clustering - Coding Part Two - Scikit-Learn.mp4 209.23Мб
004 K-Means Clustering - Coding Part One__en.srt 30.36Кб
004 K-Means Clustering - Coding Part One.mp4 97.90Мб
004 KNN Coding with Python - Part Two - Choosing K__en.srt 3.94Кб
004 KNN Coding with Python - Part Two - Choosing K_en.vtt 30.67Кб
004 KNN Coding with Python - Part Two - Choosing K.mp4 102.86Мб
004 Linear Regression - Cost Functions__en.srt 11.46Кб
004 Linear Regression - Cost Functions.mp4 16.63Мб
004 Logistic Regression - Theory and Intuition - Part Two_ Linear to Logistic__en.srt 7.27Кб
004 Logistic Regression - Theory and Intuition - Part Two_ Linear to Logistic.mp4 8.03Мб
004 Matplotlib - Implementing Figures and Axes__en.srt 20.97Кб
004 Matplotlib - Implementing Figures and Axes.mp4 34.86Мб
004 Model Deployment as an API - General Overview__en.srt 11.61Кб
004 Model Deployment as an API - General Overview.mp4 17.48Мб
004 Note on Environment Setup - Please read me_.html 857б
004 NumPy Operations__en.srt 12.05Кб
004 NumPy Operations.mp4 36.06Мб
004 PCA - Manual Implementation in Python__en.srt 26.27Кб
004 PCA - Manual Implementation in Python.mp4 95.04Мб
004 Python Crash Course - Part Three__en.srt 16.58Кб
004 Python Crash Course - Part Three.mp4 32.01Мб
004 Random Forests - Number of Estimators and Features in Subsets__en.srt 16.17Кб
004 Random Forests - Number of Estimators and Features in Subsets.mp4 27.31Мб
004 Solution Walkthrough - Supervised Learning Project - Tree Models__en.srt 4.20Кб
004 Solution Walkthrough - Supervised Learning Project - Tree Models_en.vtt 29.40Кб
004 Solution Walkthrough - Supervised Learning Project - Tree Models.mp4 114.21Мб
004 Supervised Machine Learning Process__en.srt 19.77Кб
004 Supervised Machine Learning Process.mp4 33.53Мб
004 SVM - Theory and Intuition - Kernel Intuition__en.srt 7.11Кб
004 SVM - Theory and Intuition - Kernel Intuition.mp4 9.83Мб
005 AdaBoost Coding Part Two - The Model__en.srt 26.61Кб
005 AdaBoost Coding Part Two - The Model.mp4 63.11Мб
005 Categorical Plots - Statistics within Categories - Understanding Plot Types__en.srt 8.80Кб
005 Categorical Plots - Statistics within Categories - Understanding Plot Types.mp4 15.98Мб
005 Companion Book - Introduction to Statistical Learning__en.srt 4.66Кб
005 Companion Book - Introduction to Statistical Learning.mp4 5.11Мб
005 Constructing Decision Trees with Gini Impurity - Part One__en.srt 11.48Кб
005 Constructing Decision Trees with Gini Impurity - Part One.mp4 17.69Мб
005 Cross Validation - cross_validate__en.srt 11.23Кб
005 Cross Validation - cross_validate.mp4 45.01Мб
005 DataFrames - Part Two - Basic Properties__en.srt 13.28Кб
005 DataFrames - Part Two - Basic Properties.mp4 40.28Мб
005 DBSCAN - Hyperparameter Tuning Methods__en.srt 32.66Кб
005 DBSCAN - Hyperparameter Tuning Methods.mp4 105.08Мб
005 Dealing with Missing Data _ Part Two - Filling or Dropping data based on Rows__en.srt 31.42Кб
005 Dealing with Missing Data _ Part Two - Filling or Dropping data based on Rows.mp4 117.56Мб
005 Environment Setup__en.srt 14.49Кб
005 Environment Setup.mp4 35.71Мб
005 Feature Extraction from Text - Coding Count Vectorization Manually__en.srt 27.22Кб
005 Feature Extraction from Text - Coding Count Vectorization Manually.mp4 62.89Мб
005 K-Means Clustering Coding Part Two__en.srt 26.55Кб
005 K-Means Clustering Coding Part Two.mp4 80.85Мб
005 KNN Classification Project Exercise Overview__en.srt 5.23Кб
005 KNN Classification Project Exercise Overview.mp4 21.12Мб
005 Linear Regression - Gradient Descent__en.srt 16.73Кб
005 Linear Regression - Gradient Descent.mp4 29.21Мб
005 Logistic Regression - Theory and Intuition - Linear to Logistic Math__en.srt 24.81Кб
005 Logistic Regression - Theory and Intuition - Linear to Logistic Math.mp4 36.04Мб
005 Matplotlib - Figure Parameters__en.srt 7.65Кб
005 Matplotlib - Figure Parameters.mp4 13.06Мб
005 Note on Upcoming Video.html 249б
005 NumPy Exercises__en.srt 2.07Кб
005 NumPy Exercises.mp4 9.64Мб
005 PCA - SciKit-Learn__en.srt 17.33Кб
005 PCA - SciKit-Learn.mp4 74.09Мб
005 Python Crash Course - Exercise Questions__en.srt 2.54Кб
005 Python Crash Course - Exercise Questions.mp4 3.41Мб
005 Random Forests - Bootstrapping and Out-of-Bag Error__en.srt 17.97Кб
005 Random Forests - Bootstrapping and Out-of-Bag Error.mp4 32.72Мб
005 SVM - Theory and Intuition - Kernel Trick and Mathematics__en.srt 29.30Кб
005 SVM - Theory and Intuition - Kernel Trick and Mathematics.mp4 52.62Мб
006 Categorical Plots - Statistics within Categories - Coding with Seaborn__en.srt 14.61Кб
006 Categorical Plots - Statistics within Categories - Coding with Seaborn.mp4 51.65Мб
006 Coding Classification with Random Forest Classifier - Part One__en.srt 9.92Кб
006 Coding Classification with Random Forest Classifier - Part One_en.vtt 15.78Кб
006 Coding Classification with Random Forest Classifier - Part One.mp4 52.10Мб
006 Constructing Decision Trees with Gini Impurity - Part Two__en.srt 16.42Кб
006 Constructing Decision Trees with Gini Impurity - Part Two.mp4 52.35Мб
006 DataFrames - Part Three - Working with Columns__en.srt 20.61Кб
006 DataFrames - Part Three - Working with Columns.mp4 84.08Мб
006 DBSCAN - Outlier Project Exercise Overview__en.srt 9.96Кб
006 DBSCAN - Outlier Project Exercise Overview.mp4 50.27Мб
006 Dealing with Missing Data _ Part 3 - Fixing data based on Columns__en.srt 36.75Кб
006 Dealing with Missing Data _ Part 3 - Fixing data based on Columns.mp4 105.22Мб
006 Feature Extraction from Text - Coding with Scikit-Learn__en.srt 16.67Кб
006 Feature Extraction from Text - Coding with Scikit-Learn.mp4 50.39Мб
006 Gradient Boosting Theory__en.srt 16.11Кб
006 Gradient Boosting Theory.mp4 22.96Мб
006 Grid Search__en.srt 19.26Кб
006 Grid Search.mp4 73.19Мб
006 K-Means Clustering Coding Part Three__en.srt 21.38Кб
006 K-Means Clustering Coding Part Three.mp4 59.77Мб
006 KNN Classification Project Exercise Solutions__en.srt 8.62Кб
006 KNN Classification Project Exercise Solutions_en.vtt 18.55Кб
006 KNN Classification Project Exercise Solutions.mp4 105.03Мб
006 Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood__en.srt 22.96Кб
006 Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood.mp4 54.91Мб
006 Matplotlib - Subplots Functionality__en.srt 28.63Кб
006 Matplotlib - Subplots Functionality.mp4 96.57Мб
006 Model API - Creating the Script__en.srt 26.06Кб
006 Model API - Creating the Script.mp4 67.27Мб
006 Numpy Exercises - Solutions__en.srt 10.87Кб
006 Numpy Exercises - Solutions.mp4 34.88Мб
006 PCA - Project Exercise Overview__en.srt 11.87Кб
006 PCA - Project Exercise Overview.mp4 52.77Мб
006 Python coding Simple Linear Regression__en.srt 28.14Кб
006 Python coding Simple Linear Regression.mp4 70.14Мб
006 Python Crash Course - Exercise Solutions__en.srt 13.43Кб
006 Python Crash Course - Exercise Solutions.mp4 48.70Мб
006 SVM with Scikit-Learn and Python - Classification Part One__en.srt 16.39Кб
006 SVM with Scikit-Learn and Python - Classification Part One.mp4 46.28Мб
007 Categorical Plots - Distributions within Categories - Understanding Plot Types__en.srt 20.10Кб
007 Categorical Plots - Distributions within Categories - Understanding Plot Types.mp4 44.96Мб
007 Coding Classification with Random Forest Classifier - Part Two__en.srt 20.04Кб
007 Coding Classification with Random Forest Classifier - Part Two_en.vtt 27.90Кб
007 Coding Classification with Random Forest Classifier - Part Two.mp4 130.37Мб
007 Coding Decision Trees - Part One - The Data__en.srt 29.28Кб
007 Coding Decision Trees - Part One - The Data.mp4 98.72Мб
007 DataFrames - Part Four - Working with Rows__en.srt 21.09Кб
007 DataFrames - Part Four - Working with Rows.mp4 72.59Мб
007 DBSCAN - Outlier Project Exercise Solutions__en.srt 38.12Кб
007 DBSCAN - Outlier Project Exercise Solutions.mp4 127.93Мб
007 Dealing with Categorical Data - Encoding Options__en.srt 20.10Кб
007 Dealing with Categorical Data - Encoding Options.mp4 58.87Мб
007 Gradient Boosting Coding Walkthrough__en.srt 8.90Кб
007 Gradient Boosting Coding Walkthrough_en.vtt 17.50Кб
007 Gradient Boosting Coding Walkthrough.mp4 57.91Мб
007 K-Means Color Quantization - Part One__en.srt 20.38Кб
007 K-Means Color Quantization - Part One.mp4 80.57Мб
007 Linear Regression Project Overview__en.srt 5.82Кб
007 Linear Regression Project Overview.mp4 23.63Мб
007 Logistic Regression with Scikit-Learn - Part One - EDA__en.srt 21.90Кб
007 Logistic Regression with Scikit-Learn - Part One - EDA.mp4 62.45Мб
007 Matplotlib Styling - Legends__en.srt 10.36Кб
007 Matplotlib Styling - Legends.mp4 16.19Мб
007 Natural Language Processing - Classification of Text - Part One__en.srt 16.42Кб
007 Natural Language Processing - Classification of Text - Part One.mp4 28.26Мб
007 Overview of Scikit-Learn and Python__en.srt 10.14Кб
007 Overview of Scikit-Learn and Python_en.vtt 10.96Кб
007 Overview of Scikit-Learn and Python.mp4 31.44Мб
007 PCA - Project Exercise Solution__en.srt 25.72Кб
007 PCA - Project Exercise Solution.mp4 119.45Мб
007 SVM with Scikit-Learn and Python - Classification Part Two__en.srt 20.73Кб
007 SVM with Scikit-Learn and Python - Classification Part Two_en.vtt 20.98Кб
007 SVM with Scikit-Learn and Python - Classification Part Two.mp4 90.63Мб
007 Testing the API__en.srt 12.17Кб
007 Testing the API.mp4 33.15Мб
008 Categorical Plots - Distributions within Categories - Coding with Seaborn__en.srt 28.26Кб
008 Categorical Plots - Distributions within Categories - Coding with Seaborn.mp4 84.57Мб
008 Coding Decision Trees - Part Two -Creating the Model__en.srt 32.70Кб
008 Coding Decision Trees - Part Two -Creating the Model.mp4 115.80Мб
008 Coding Regression with Random Forest Regressor - Part One - Data__en.srt 6.86Кб
008 Coding Regression with Random Forest Regressor - Part One - Data.mp4 13.68Мб
008 K-Means Color Quantization - Part Two__en.srt 21.27Кб
008 K-Means Color Quantization - Part Two.mp4 65.03Мб
008 Linear Regression Project - Solutions__en.srt 8.80Кб
008 Linear Regression Project - Solutions_en.vtt 15.87Кб
008 Linear Regression Project - Solutions.mp4 91.23Мб
008 Linear Regression - Scikit-Learn Train Test Split__en.srt 23.78Кб
008 Linear Regression - Scikit-Learn Train Test Split.mp4 61.42Мб
008 Logistic Regression with Scikit-Learn - Part Two - Model Training__en.srt 9.57Кб
008 Logistic Regression with Scikit-Learn - Part Two - Model Training.mp4 32.57Мб
008 Matplotlib Styling - Colors and Styles__en.srt 21.04Кб
008 Matplotlib Styling - Colors and Styles.mp4 44.27Мб
008 Natural Language Processing - Classification of Text - Part Two__en.srt 15.34Кб
008 Natural Language Processing - Classification of Text - Part Two.mp4 34.77Мб
008 Pandas - Conditional Filtering__en.srt 27.14Кб
008 Pandas - Conditional Filtering.mp4 69.21Мб
008 SVM with Scikit-Learn and Python - Regression Tasks__en.srt 25.67Кб
008 SVM with Scikit-Learn and Python - Regression Tasks_en.vtt 26.15Кб
008 SVM with Scikit-Learn and Python - Regression Tasks.mp4 76.27Мб
009 Advanced Matplotlib Commands (Optional)__en.srt 6.49Кб
009 Advanced Matplotlib Commands (Optional).mp4 25.19Мб
009 Classification Metrics - Confusion Matrix and Accuracy__en.srt 13.93Кб
009 Classification Metrics - Confusion Matrix and Accuracy.mp4 21.72Мб
009 Coding Regression with Random Forest Regressor - Part Two - Basic Models__en.srt 20.42Кб
009 Coding Regression with Random Forest Regressor - Part Two - Basic Models.mp4 85.01Мб
009 K-Means Clustering Exercise Overview__en.srt 13.43Кб
009 K-Means Clustering Exercise Overview.mp4 59.48Мб
009 Linear Regression - Scikit-Learn Performance Evaluation - Regression__en.srt 23.00Кб
009 Linear Regression - Scikit-Learn Performance Evaluation - Regression.mp4 53.40Мб
009 Pandas - Useful Methods - Apply on Single Column__en.srt 20.23Кб
009 Pandas - Useful Methods - Apply on Single Column.mp4 53.72Мб
009 Seaborn - Comparison Plots - Understanding the Plot Types__en.srt 8.74Кб
009 Seaborn - Comparison Plots - Understanding the Plot Types.mp4 10.57Мб
009 Support Vector Machine Project Overview__en.srt 6.87Кб
009 Support Vector Machine Project Overview.mp4 34.84Мб
009 Text Classification Project Exercise Overview__en.srt 7.86Кб
009 Text Classification Project Exercise Overview.mp4 30.54Мб
010 Classification Metrics - Precison, Recall, F1-Score__en.srt 8.34Кб
010 Classification Metrics - Precison, Recall, F1-Score.mp4 33.14Мб
010 Coding Regression with Random Forest Regressor - Part Three - Polynomials__en.srt 15.34Кб
010 Coding Regression with Random Forest Regressor - Part Three - Polynomials.mp4 45.54Мб
010 K-Means Clustering Exercise Solution - Part One__en.srt 21.10Кб
010 K-Means Clustering Exercise Solution - Part One.mp4 79.92Мб
010 Linear Regression - Residual Plots__en.srt 20.22Кб
010 Linear Regression - Residual Plots.mp4 44.02Мб
010 Matplotlib Exercise Questions Overview__en.srt 9.33Кб
010 Matplotlib Exercise Questions Overview.mp4 48.99Мб
010 Pandas - Useful Methods - Apply on Multiple Columns__en.srt 25.93Кб
010 Pandas - Useful Methods - Apply on Multiple Columns.mp4 85.32Мб
010 Seaborn - Comparison Plots - Coding with Seaborn__en.srt 15.71Кб
010 Seaborn - Comparison Plots - Coding with Seaborn.mp4 51.16Мб
010 Support Vector Machine Project Solutions__en.srt 12.75Кб
010 Support Vector Machine Project Solutions_en.vtt 22.50Кб
010 Support Vector Machine Project Solutions.mp4 93.36Мб
010 Text Classification Project Exercise Solutions__en.srt 19.40Кб
010 Text Classification Project Exercise Solutions_en.vtt 21.33Кб
010 Text Classification Project Exercise Solutions.mp4 100.59Мб
011 Classification Metrics - ROC Curves__en.srt 11.07Кб
011 Classification Metrics - ROC Curves.mp4 16.07Мб
011 Coding Regression with Random Forest Regressor - Part Four - Advanced Models__en.srt 15.45Кб
011 Coding Regression with Random Forest Regressor - Part Four - Advanced Models.mp4 50.67Мб
011 K-Means Clustering Exercise Solution - Part Two__en.srt 23.53Кб
011 K-Means Clustering Exercise Solution - Part Two.mp4 108.19Мб
011 Linear Regression - Model Deployment and Coefficient Interpretation__en.srt 25.62Кб
011 Linear Regression - Model Deployment and Coefficient Interpretation.mp4 81.14Мб
011 Matplotlib Exercise Questions - Solutions__en.srt 24.53Кб
011 Matplotlib Exercise Questions - Solutions.mp4 105.86Мб
011 Pandas - Useful Methods - Statistical Information and Sorting__en.srt 23.40Кб
011 Pandas - Useful Methods - Statistical Information and Sorting.mp4 74.37Мб
011 Seaborn Grid Plots__en.srt 20.50Кб
011 Seaborn Grid Plots.mp4 87.01Мб
012 K-Means Clustering Exercise Solution - Part Three__en.srt 12.15Кб
012 K-Means Clustering Exercise Solution - Part Three.mp4 62.50Мб
012 Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation__en.srt 23.43Кб
012 Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation.mp4 57.03Мб
012 Missing Data - Overview__en.srt 18.36Кб
012 Missing Data - Overview.mp4 27.24Мб
012 Polynomial Regression - Theory and Motivation__en.srt 11.21Кб
012 Polynomial Regression - Theory and Motivation.mp4 22.25Мб
012 Seaborn - Matrix Plots__en.srt 21.09Кб
012 Seaborn - Matrix Plots.mp4 61.47Мб
013 Missing Data - Pandas Operations__en.srt 27.41Кб
013 Missing Data - Pandas Operations.mp4 73.60Мб
013 Multi-Class Classification with Logistic Regression - Part One - Data and EDA__en.srt 12.01Кб
013 Multi-Class Classification with Logistic Regression - Part One - Data and EDA.mp4 37.38Мб
013 Polynomial Regression - Creating Polynomial Features__en.srt 16.39Кб
013 Polynomial Regression - Creating Polynomial Features.mp4 40.09Мб
013 Seaborn Plot Exercises Overview__en.srt 11.26Кб
013 Seaborn Plot Exercises Overview.mp4 47.88Мб
014 GroupBy Operations - Part One__en.srt 21.41Кб
014 GroupBy Operations - Part One.mp4 86.96Мб
014 Multi-Class Classification with Logistic Regression - Part Two - Model__en.srt 23.82Кб
014 Multi-Class Classification with Logistic Regression - Part Two - Model.mp4 105.09Мб
014 Polynomial Regression - Training and Evaluation__en.srt 14.17Кб
014 Polynomial Regression - Training and Evaluation.mp4 36.30Мб
014 Seaborn Plot Exercises Solutions__en.srt 22.39Кб
014 Seaborn Plot Exercises Solutions.mp4 105.72Мб
015 Bias Variance Trade-Off__en.srt 15.94Кб
015 Bias Variance Trade-Off.mp4 36.18Мб
015 GroupBy Operations - Part Two - MultiIndex__en.srt 20.86Кб
015 GroupBy Operations - Part Two - MultiIndex.mp4 92.86Мб
015 Logistic Regression Exercise Project Overview__en.srt 6.49Кб
015 Logistic Regression Exercise Project Overview.mp4 24.29Мб
016 Combining DataFrames - Concatenation__en.srt 15.02Кб
016 Combining DataFrames - Concatenation.mp4 36.84Мб
016 Logistic Regression Project Exercise - Solutions__en.srt 14.33Кб
016 Logistic Regression Project Exercise - Solutions_en.vtt 30.89Кб
016 Logistic Regression Project Exercise - Solutions.mp4 161.29Мб
016 Polynomial Regression - Choosing Degree of Polynomial__en.srt 19.88Кб
016 Polynomial Regression - Choosing Degree of Polynomial.mp4 55.68Мб
017 Combining DataFrames - Inner Merge__en.srt 18.52Кб
017 Combining DataFrames - Inner Merge.mp4 40.27Мб
017 Polynomial Regression - Model Deployment__en.srt 8.38Кб
017 Polynomial Regression - Model Deployment.mp4 23.22Мб
018 Combining DataFrames - Left and Right Merge__en.srt 9.10Кб
018 Combining DataFrames - Left and Right Merge.mp4 16.40Мб
018 Regularization Overview__en.srt 10.33Кб
018 Regularization Overview.mp4 15.52Мб
019 Combining DataFrames - Outer Merge__en.srt 14.57Кб
019 Combining DataFrames - Outer Merge.mp4 22.17Мб
019 Feature Scaling__en.srt 14.83Кб
019 Feature Scaling.mp4 24.34Мб
020 Introduction to Cross Validation__en.srt 19.81Кб
020 Introduction to Cross Validation.mp4 32.97Мб
020 Pandas - Text Methods for String Data__en.srt 23.95Кб
020 Pandas - Text Methods for String Data.mp4 45.12Мб
021 Pandas - Time Methods for Date and Time Data__en.srt 31.72Кб
021 Pandas - Time Methods for Date and Time Data.mp4 80.19Мб
021 Regularization Data Setup__en.srt 12.42Кб
021 Regularization Data Setup.mp4 20.16Мб
022 L2 Regularization - Ridge Regression Theory__en.srt 20.72Кб
022 L2 Regularization - Ridge Regression Theory.mp4 61.30Мб
022 Pandas Input and Output - CSV Files__en.srt 16.60Кб
022 Pandas Input and Output - CSV Files.mp4 37.15Мб
023 L2 Regularization - Ridge Regression - Python Implementation__en.srt 10.89Кб
023 L2 Regularization - Ridge Regression - Python Implementation_en.vtt 22.98Кб
023 L2 Regularization - Ridge Regression - Python Implementation.mp4 89.37Мб
023 Pandas Input and Output - HTML Tables__en.srt 22.36Кб
023 Pandas Input and Output - HTML Tables.mp4 102.34Мб
024 L1 Regularization - Lasso Regression - Background and Implementation__en.srt 5.40Кб
024 L1 Regularization - Lasso Regression - Background and Implementation_en.vtt 19.64Кб
024 L1 Regularization - Lasso Regression - Background and Implementation.mp4 94.65Мб
024 Pandas Input and Output - Excel Files__en.srt 10.88Кб
024 Pandas Input and Output - Excel Files.mp4 25.87Мб
025 L1 and L2 Regularization - Elastic Net__en.srt 16.97Кб
025 L1 and L2 Regularization - Elastic Net_en.vtt 22.62Кб
025 L1 and L2 Regularization - Elastic Net.mp4 66.40Мб
025 Pandas Input and Output - SQL Databases__en.srt 29.43Кб
025 Pandas Input and Output - SQL Databases.mp4 95.98Мб
026 Linear Regression Project - Data Overview__en.srt 7.67Кб
026 Linear Regression Project - Data Overview.mp4 16.94Мб
026 Pandas Pivot Tables__en.srt 32.18Кб
026 Pandas Pivot Tables.mp4 129.09Мб
027 Pandas Project Exercise Overview__en.srt 9.59Кб
027 Pandas Project Exercise Overview.mp4 39.43Мб
028 Pandas Project Exercise Solutions__en.srt 38.77Кб
028 Pandas Project Exercise Solutions.mp4 172.55Мб
28813464-requirements.txt 221б
29304858-11-Logistic-Regression-Models.zip 2.02Мб
29434428-12-K-Nearest-Neighbors.zip 1.35Мб
29902052-13-Support-Vector-Machines.zip 1.51Мб
30205020-14-Decision-Trees.zip 1.79Мб
30930956-15-Random-Forests.zip 3.93Мб
30930966-data-banknote-authentication.csv 45.38Кб
31286608-16-Boosted-Trees.zip 917.98Кб
31286610-mushrooms.csv 365.24Кб
31389398-17-Supervised-Learning-Capstone-Project.zip 7.04Мб
31389400-Telco-Customer-Churn.csv 953.66Кб
31640094-18-Naive-Bayes-and-NLP.zip 192.48Кб
31640102-airline-tweets.csv 3.26Мб
31640132-moviereviews.csv 7.22Мб
32407448-20-Kmeans-Clustering.zip 5.83Мб
32407452-bank-full.csv 4.95Мб
32407456-CIA-Country-Facts.csv 32.70Кб
32407460-country-iso-codes.csv 7.94Кб
33028500-21-Hierarchical-Clustering.zip 621.63Кб
33028506-cluster-mpg.csv 20.83Кб
33555798-palm-trees.jpg 172.74Кб
33643014-22-DBSCAN.zip 3.51Мб
33643060-cluster-circles.csv 59.88Кб
33643066-wholesome-customers-data.csv 14.67Кб
33643070-cluster-two-blobs-outliers.csv 38.29Кб
33643072-cluster-two-blobs.csv 38.26Кб
33643080-cluster-blobs.csv 55.86Кб
33643082-cluster-moons.csv 58.70Кб
33912190-digits.csv 485.53Кб
33912194-cancer-tumor-data-features.csv 117.98Кб
33912220-23-PCA-Principal-Component-Analysis.zip 3.94Мб
33985574-UNZIP-FOR-NOTEBOOKS-FINAL.zip 67.11Мб
33985614-UNZIP-FOR-NOTEBOOKS-FINAL.zip 67.11Мб
external-assets-links.txt 132б
external-assets-links.txt 103б
Статистика распространения по странам
Великобритания (GB) 1
Эфиопия (ET) 1
Эстония (EE) 1
Италия (IT) 1
Франция (FR) 1
Всего 5
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент