Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
72б |
001 Course Structure.en.srt |
1.61Кб |
001 Course Structure.mp4 |
15.03Мб |
002 How To Make The Most Out Of This Course.en.srt |
2.54Кб |
002 How To Make The Most Out Of This Course.mp4 |
8.20Мб |
003 What is Neuron.en.srt |
1.86Кб |
003 What is Neuron.mp4 |
7.22Мб |
004 What is Deep Learning.en.srt |
1.41Кб |
004 What is Deep Learning.mp4 |
18.49Мб |
005 What is ANN.en.srt |
4.38Кб |
005 What is ANN.mp4 |
18.25Мб |
006 What is Tensorflow and how to install it.en.srt |
2.31Кб |
006 What is Tensorflow and how to install it.mp4 |
20.51Мб |
007 Important note about tools in this course.en.srt |
1.76Кб |
007 Important note about tools in this course.mp4 |
5.09Мб |
008 Multilayer Neural Network.en.srt |
7.19Кб |
008 Multilayer Neural Network.mp4 |
40.28Мб |
009 Introduction to Pandas and visualization.en.srt |
11.85Кб |
009 Introduction to Pandas and visualization.mp4 |
61.06Мб |
010 Data Preprocessing by Pandas.en.srt |
10.29Кб |
010 Data Preprocessing by Pandas.mp4 |
60.18Мб |
011 (OPTIONAL) Anaconda Installation.en.srt |
2.54Кб |
011 (OPTIONAL) Anaconda Installation.mp4 |
26.24Мб |
012 Some Of The Important Terms In Neural Network.en.srt |
11.76Кб |
012 Some Of The Important Terms In Neural Network.mp4 |
105.91Мб |
013 What is activation function.en.srt |
1.50Кб |
013 What is activation function.mp4 |
7.60Мб |
014 What is sigmoid function.en.srt |
1.55Кб |
014 What is sigmoid function.mp4 |
3.25Мб |
015 What is tanh function.en.srt |
1.17Кб |
015 What is tanh function.mp4 |
2.39Мб |
016 What is Rectified Linear Unit function.en.srt |
875б |
016 What is Rectified Linear Unit function.mp4 |
2.25Мб |
017 What is Leaky ReLU function.en.srt |
875б |
017 What is Leaky ReLU function.mp4 |
2.25Мб |
018 What is The Exponential Linear Unit Function.en.srt |
853б |
018 What is The Exponential Linear Unit Function.mp4 |
1.86Мб |
019 What is The Swish function.en.srt |
2.00Кб |
019 What is The Swish function.mp4 |
3.74Мб |
020 What is The Softmax function.en.srt |
1.27Кб |
020 What is The Softmax function.mp4 |
2.40Мб |
021 Activation-function.ipynb |
2.50Кб |
021 Time to code all the activation functions.en.srt |
7.16Кб |
021 Time to code all the activation functions.mp4 |
36.90Мб |
022 Introduction to the project.en.srt |
1.99Кб |
022 Introduction to the project.mp4 |
13.43Мб |
023 ConcreteData.xlsx |
69.19Кб |
023 Importing Data and Libraries.en.srt |
8.67Кб |
023 Importing Data and Libraries.mp4 |
54.32Мб |
024 Exploratory analysis.en.srt |
2.74Кб |
024 Exploratory analysis.mp4 |
15.27Мб |
025 Data Visualization.en.srt |
12.00Кб |
025 Data Visualization.mp4 |
89.64Мб |
026 Data scaling.en.srt |
7.94Кб |
026 Data scaling.mp4 |
48.89Мб |
027 Building Neural Network model.en.srt |
21.64Кб |
027 Building Neural Network model.mp4 |
162.55Мб |
028 Evaluating the model.en.srt |
5.42Кб |
028 Evaluating the model.mp4 |
41.00Мб |
029 Concrete-project.ipynb |
1.35Мб |
029 Improving the model.en.srt |
23.61Кб |
029 Improving the model.mp4 |
189.93Мб |
030 Project Summary.en.srt |
3.62Кб |
030 Project Summary.mp4 |
28.24Мб |
031 Convolution Neural Network.en.srt |
7.97Кб |
031 Convolution Neural Network.mp4 |
44.17Мб |
032 Convolution Layers.en.srt |
4.25Кб |
032 Convolution Layers.mp4 |
16.16Мб |
033 Pooling Layers.en.srt |
4.15Кб |
033 Pooling Layers.mp4 |
20.86Мб |
034 Introduction to the project.en.srt |
787б |
034 Introduction to the project.mp4 |
6.40Мб |
035 Importing library and data.en.srt |
8.51Кб |
035 Importing library and data.mp4 |
64.62Мб |
036 Compiling the model.en.srt |
10.62Кб |
036 Compiling the model.mp4 |
115.58Мб |
037 Training Neural Network.en.srt |
9.80Кб |
037 Training Neural Network.mp4 |
92.03Мб |
038 Results.en.srt |
5.93Кб |
038 Results.mp4 |
43.24Мб |
039 Cifar-10-Udemy.ipynb |
250.39Кб |
039 Visualizing filters.en.srt |
8.93Кб |
039 Visualizing filters.mp4 |
75.38Мб |
040 Summary of the project.en.srt |
3.22Кб |
040 Summary of the project.mp4 |
23.36Мб |
041 Introduction to the project.en.srt |
2.77Кб |
041 Introduction to the project.mp4 |
18.25Мб |
042 Importing library and data.en.srt |
6.58Кб |
042 Importing library and data.mp4 |
45.42Мб |
043 Visualizing data.en.srt |
4.06Кб |
043 Visualizing data.mp4 |
37.41Мб |
044 Building Neural Network model.en.srt |
14.76Кб |
044 Building Neural Network model.mp4 |
120.94Мб |
045 Training and Testing Model.en.srt |
12.44Кб |
045 Training and Testing Model.mp4 |
120.30Мб |
046 Visualizing Convolutional Filters.en.srt |
5.21Кб |
046 Visualizing Convolutional Filters.mp4 |
32.30Мб |
047 Improving the clothing image classifier with data augmentation.en.srt |
13.66Кб |
047 Improving the clothing image classifier with data augmentation.mp4 |
152.37Мб |
047 Udemy-clothing-image.ipynb |
103.76Кб |
048 Summary of the project.en.srt |
5.97Кб |
048 Summary of the project.mp4 |
49.32Мб |
049 Basic Introduction to RNN.en.srt |
8.00Кб |
049 Basic Introduction to RNN.mp4 |
37.62Мб |
050 Fully Recurrent Neural Networks and Recursive Neural Networks.en.srt |
2.09Кб |
050 Fully Recurrent Neural Networks and Recursive Neural Networks.mp4 |
10.93Мб |
051 Hopfield Recurrent Neural Networks and Elman Neural Networks.en.srt |
4.75Кб |
051 Hopfield Recurrent Neural Networks and Elman Neural Networks.mp4 |
25.81Мб |
052 Long Short-term Memory Network.en.srt |
4.40Кб |
052 Long Short-term Memory Network.mp4 |
19.37Мб |
053 Sentiment analysis basic concepts.en.srt |
5.86Кб |
053 Sentiment analysis basic concepts.mp4 |
38.14Мб |
054 Sentiment analysis techniques.en.srt |
2.27Кб |
054 Sentiment analysis techniques.mp4 |
7.25Мб |
055 The next challenges for sentiment analysis.en.srt |
3.23Кб |
055 The next challenges for sentiment analysis.mp4 |
11.40Мб |
056 Lexicon and semantics analysis.en.srt |
3.00Кб |
056 Lexicon and semantics analysis.mp4 |
11.51Мб |
057 Introduction to the project.en.srt |
4.30Кб |
057 Introduction to the project.mp4 |
34.37Мб |
058 Importing library and data.en.srt |
11.34Кб |
058 Importing library and data.mp4 |
118.77Мб |
059 Exploratory analysis.en.srt |
12.44Кб |
059 Exploratory analysis.mp4 |
96.12Мб |
060 Visualizing data.en.srt |
21.31Кб |
060 Visualizing data.mp4 |
149.90Мб |
061 Building RNN model.en.srt |
23.74Кб |
061 Building RNN model.mp4 |
207.15Мб |
062 Exploring Results.en.srt |
7.71Кб |
062 Exploring Results.mp4 |
76.46Мб |
062 Movie-Reviews-Udemy.ipynb |
1.80Мб |
063 Summary of the project.en.srt |
1.95Кб |
063 Summary of the project.mp4 |
22.73Мб |
064 What is NLP.en.srt |
3.44Кб |
064 What is NLP.mp4 |
15.34Мб |
065 NLP Applications.en.srt |
4.19Кб |
065 NLP Applications.mp4 |
21.17Мб |
066 NLP tools Part 1.en.srt |
16.54Кб |
066 NLP tools Part 1.mp4 |
110.46Мб |
067 NLP tools Part 2.en.srt |
5.56Кб |
067 NLP tools Part 2.mp4 |
37.02Мб |
068 NLP tools Part 3.en.srt |
4.02Кб |
068 NLP tools Part 3.mp4 |
24.92Мб |
068 NLTK-tools.ipynb |
62.08Кб |
069 NLP tools Part 4.en.srt |
2.26Кб |
069 NLP tools Part 4.mp4 |
10.65Мб |
070 Introduction to the project.en.srt |
1.09Кб |
070 Introduction to the project.mp4 |
7.37Мб |
071 Importing library and data.en.srt |
15.09Кб |
071 Importing library and data.mp4 |
107.86Мб |
072 Exploring the newsgroups data.en.srt |
7.71Кб |
072 Exploring the newsgroups data.mp4 |
52.42Мб |
073 Counting the occurrence of each word token.en.srt |
13.76Кб |
073 Counting the occurrence of each word token.mp4 |
92.14Мб |
074 Text Preprocessing.en.srt |
2.20Кб |
074 Text Preprocessing.mp4 |
18.47Мб |
075 Dropping Stop Words.en.srt |
2.82Кб |
075 Dropping Stop Words.mp4 |
20.40Мб |
076 Reducing inflectional and derivational forms of words.en.srt |
7.24Кб |
076 Reducing inflectional and derivational forms of words.mp4 |
69.30Мб |
077 What Is Dimensionality Reduction_.en.srt |
5.77Кб |
077 What Is Dimensionality Reduction_.mp4 |
50.99Мб |
078 T-SNE for Dimensionality Reduction.en.srt |
16.66Кб |
078 T-SNE for Dimensionality Reduction.mp4 |
155.24Мб |
078 Udemy-Newsgroup-project.ipynb |
356.28Кб |
079 Summary of the project.en.srt |
3.19Кб |
079 Summary of the project.mp4 |
34.42Мб |
080 Autoencoder introduction.en.srt |
6.26Кб |
080 Autoencoder introduction.mp4 |
47.59Мб |
081 Principle of Autoencoder.en.srt |
5.46Кб |
081 Principle of Autoencoder.mp4 |
39.35Мб |
082 Importing library and data.en.srt |
6.34Кб |
082 Importing library and data.mp4 |
57.31Мб |
083 IMPORTANT note.html |
2.53Кб |
084 Build autoencoder model.en.srt |
10.57Кб |
084 Build autoencoder model.mp4 |
96.27Мб |
085 Reconstructing the input.en.srt |
5.45Кб |
085 Reconstructing the input.mp4 |
45.14Мб |
086 Train the autoencoder model.en.srt |
6.59Кб |
086 Train the autoencoder model.mp4 |
52.01Мб |
087 Summary of the autoencoder model.en.srt |
6.20Кб |
087 Summary of the autoencoder model.mp4 |
46.83Мб |
088 Visualizing latent vector PART 1.en.srt |
10.73Кб |
088 Visualizing latent vector PART 1.mp4 |
93.82Мб |
089 Visualizing latent vector PART 2.en.srt |
8.98Кб |
089 Visualizing latent vector PART 2.mp4 |
95.15Мб |
090 Analysing Results.en.srt |
3.29Кб |
090 Analysing Results.mp4 |
30.59Мб |
090 Udemy-Autoencoder-Implementation.ipynb |
894.53Кб |
091 Summary of the project.en.srt |
1.97Кб |
091 Summary of the project.mp4 |
21.40Мб |
091 Udemy-Autoencoder-Implementation.ipynb |
894.53Кб |
092 Denoising autoencoders Implementation Part 1.en.srt |
5.36Кб |
092 Denoising autoencoders Implementation Part 1.mp4 |
38.02Мб |
093 Denoising autoencoders Implementation Part 2.en.srt |
4.23Кб |
093 Denoising autoencoders Implementation Part 2.mp4 |
50.97Мб |
094 Denoising autoencoders Implementation Part 3.en.srt |
4.71Кб |
094 Denoising autoencoders Implementation Part 3.mp4 |
48.53Мб |
095 Denoising autoencoders Implementation Part 4.en.srt |
4.58Кб |
095 Denoising autoencoders Implementation Part 4.mp4 |
47.55Мб |
096 Denoising autoencoders Implementation Part 5.en.srt |
2.96Кб |
096 Denoising autoencoders Implementation Part 5.mp4 |
27.19Мб |
097 Denoising autoencoders Implementation Part 6.en.srt |
9.03Кб |
097 Denoising autoencoders Implementation Part 6.mp4 |
89.10Мб |
097 Udemy-Denoising-autoencoders.ipynb |
105.19Кб |
098 What is GAN.en.srt |
2.02Кб |
098 What is GAN.mp4 |
11.41Мб |
099 GAN Implementation Part 1.en.srt |
9.65Кб |
099 GAN Implementation Part 1.mp4 |
80.80Мб |
1 |
53б |
10 |
137.29Кб |
100 |
749.51Кб |
100 GAN Implementation Part 2.en.srt |
5.13Кб |
100 GAN Implementation Part 2.mp4 |
54.37Мб |
101 |
992.20Кб |
101 GAN Implementation Part 3.en.srt |
11.10Кб |
101 GAN Implementation Part 3.mp4 |
116.41Мб |
102 |
535.25Кб |
102 GAN Implementation Part 4.en.srt |
7.15Кб |
102 GAN Implementation Part 4.mp4 |
53.42Мб |
103 |
797.21Кб |
103 GAN Implement Part 5.en.srt |
6.78Кб |
103 GAN Implement Part 5.mp4 |
66.75Мб |
103 Udemy-GAN-Implementation.ipynb |
242.29Кб |
104 |
587.68Кб |
104 Deep Convolutional GAN (DCGAN) Implementation Part 1.en.srt |
10.10Кб |
104 Deep Convolutional GAN (DCGAN) Implementation Part 1.mp4 |
72.82Мб |
105 |
595.45Кб |
105 Deep Convolutional GAN (DCGAN) Implementation Part 2.en.srt |
6.12Кб |
105 Deep Convolutional GAN (DCGAN) Implementation Part 2.mp4 |
58.58Мб |
106 |
60.99Кб |
106 Deep Convolutional GAN (DCGAN) Implementation Part 3.en.srt |
7.47Кб |
106 Deep Convolutional GAN (DCGAN) Implementation Part 3.mp4 |
85.51Мб |
107 |
497.66Кб |
107 Deep Convolutional GAN (DCGAN) Implementation Part 4.en.srt |
7.99Кб |
107 Deep Convolutional GAN (DCGAN) Implementation Part 4.mp4 |
68.36Мб |
107 Deep-Convolutional-GAN-DCGAN.ipynb |
63.43Кб |
108 |
524.39Кб |
108 Deep-Convolutional-GAN-DCGAN-1.ipynb |
204.36Кб |
108 Summary of the project.en.srt |
2.59Кб |
108 Summary of the project.mp4 |
27.54Мб |
109 |
607.66Кб |
109 Introduction to RBMs.en.srt |
1.19Кб |
109 Introduction to RBMs.mp4 |
5.29Мб |
11 |
601.58Кб |
110 |
614.50Кб |
110 BMs and RBMs.en.srt |
3.22Кб |
110 BMs and RBMs.mp4 |
14.22Мб |
111 |
906.35Кб |
111 Bernoulli RBMs.en.srt |
2.58Кб |
111 Bernoulli RBMs.mp4 |
11.11Мб |
112 |
69.30Кб |
112 Restricted Boltzman Machine Implementation Part 1.en.srt |
8.30Кб |
112 Restricted Boltzman Machine Implementation Part 1.mp4 |
64.69Мб |
113 |
363.18Кб |
113 Restricted Boltzman Machine Implementation Part 3.en.srt |
3.68Кб |
113 Restricted Boltzman Machine Implementation Part 3.mp4 |
26.23Мб |
113 UDEMY-Restricted-Boltzman-Machine-Implementation.ipynb |
147.30Кб |
114 |
815.84Кб |
114 Restricted Boltzman Machine Implementation Part 2.en.srt |
6.03Кб |
114 Restricted Boltzman Machine Implementation Part 2.mp4 |
46.91Мб |
115 |
407.41Кб |
115 Summary of the project.en.srt |
2.80Кб |
115 Summary of the project.mp4 |
18.82Мб |
116 |
649.01Кб |
116 What is Deep Reinforcement Learning.en.srt |
2.69Кб |
116 What is Deep Reinforcement Learning.mp4 |
11.49Мб |
117 |
768.53Кб |
117 Deep Reinforcement Learning.en.srt |
4.83Кб |
117 Deep Reinforcement Learning.mp4 |
18.79Мб |
118 |
802.51Кб |
118 Reward.en.srt |
5.99Кб |
118 Reward.mp4 |
25.97Мб |
119 |
618.32Кб |
119 The agent and The environment.en.srt |
2.91Кб |
119 The agent and The environment.mp4 |
13.42Мб |
12 |
430.46Кб |
120 |
723.60Кб |
120 Why Reinforcement Learning_.en.srt |
3.50Кб |
120 Why Reinforcement Learning_.mp4 |
14.48Мб |
121 |
931.67Кб |
121 Introduction to Monte Carlo Method.en.srt |
3.92Кб |
121 Introduction to Monte Carlo Method.mp4 |
21.51Мб |
122 |
270.07Кб |
122 Basic concepts of the Monte Carlo simulation and Monte Carlo Applications.en.srt |
5.52Кб |
122 Basic concepts of the Monte Carlo simulation and Monte Carlo Applications.mp4 |
26.67Мб |
123 |
763.48Кб |
123 Introduction to the project.en.srt |
2.61Кб |
123 Introduction to the project.mp4 |
12.94Мб |
124 |
612.30Кб |
124 AMZN.csv |
318.07Кб |
124 Importing library and data.en.srt |
9.30Кб |
124 Importing library and data.mp4 |
69.13Мб |
125 |
625.06Кб |
125 Exploratory analysis.en.srt |
19.65Кб |
125 Exploratory analysis.mp4 |
108.01Мб |
126 |
763.62Кб |
126 Monte Carlo Simulation- Theory.en.srt |
13.07Кб |
126 Monte Carlo Simulation- Theory.mp4 |
117.87Мб |
127 |
772.37Кб |
127 Monte Carlo Simulation-Implementation Part 1.en.srt |
16.42Кб |
127 Monte Carlo Simulation-Implementation Part 1.mp4 |
134.57Мб |
128 |
145.98Кб |
128 Monte Carlo Simulation-Implementation Part 2.en.srt |
4.01Кб |
128 Monte Carlo Simulation-Implementation Part 2.mp4 |
35.84Мб |
128 Udemy-stock-price-prediction.ipynb |
132.27Кб |
129 |
200.00Кб |
129 Summary of the project.en.srt |
1.94Кб |
129 Summary of the project.mp4 |
19.91Мб |
13 |
551.23Кб |
130 SMS Spam Detection (Available on May).html |
956б |
131 Extra Link.html |
1.03Кб |
132 Thank you.en.srt |
1.69Кб |
132 Thank you.mp4 |
23.31Мб |
14 |
1011.93Кб |
15 |
138.42Кб |
16 |
96.42Кб |
17 |
746.01Кб |
18 |
897.25Кб |
19 |
867.88Кб |
2 |
420б |
20 |
189.06Кб |
21 |
883.82Кб |
22 |
990.32Кб |
23 |
368.67Кб |
24 |
926.38Кб |
25 |
505.21Кб |
26 |
202.77Кб |
27 |
555.94Кб |
28 |
636.40Кб |
29 |
188.31Кб |
3 |
579.54Кб |
30 |
716.08Кб |
31 |
886.50Кб |
32 |
659.95Кб |
33 |
257.62Кб |
34 |
315.98Кб |
35 |
387.63Кб |
36 |
963.26Кб |
37 |
843.92Кб |
38 |
430.14Кб |
39 |
707.67Кб |
4 |
643.06Кб |
40 |
644.27Кб |
41 |
694.27Кб |
42 |
597.61Кб |
43 |
597.18Кб |
44 |
1014.33Кб |
45 |
12.98Кб |
46 |
30.71Кб |
47 |
694.30Кб |
48 |
111.52Кб |
49 |
481.32Кб |
5 |
103.38Кб |
50 |
417.54Кб |
51 |
462.02Кб |
52 |
96.30Кб |
53 |
171.96Кб |
54 |
598.47Кб |
55 |
881.47Кб |
56 |
847.25Кб |
57 |
780.40Кб |
58 |
1018.89Кб |
59 |
734.25Кб |
6 |
443.77Кб |
60 |
670.27Кб |
61 |
882.86Кб |
62 |
1001.56Кб |
63 |
392.21Кб |
64 |
600.38Кб |
65 |
1006.48Кб |
66 |
104.06Кб |
67 |
164.87Кб |
68 |
594.27Кб |
69 |
643.24Кб |
7 |
64.06Кб |
70 |
716.02Кб |
71 |
418.15Кб |
72 |
777.83Кб |
73 |
475.06Кб |
74 |
827.18Кб |
75 |
340.18Кб |
76 |
774.38Кб |
77 |
783.92Кб |
78 |
35.34Кб |
79 |
196.20Кб |
8 |
711.79Кб |
80 |
85.00Кб |
81 |
656.60Кб |
82 |
711.64Кб |
83 |
278.90Кб |
84 |
502.75Кб |
85 |
615.46Кб |
86 |
850.99Кб |
87 |
147.14Кб |
88 |
502.28Кб |
89 |
614.37Кб |
9 |
239.93Кб |
90 |
88.70Кб |
91 |
649.75Кб |
92 |
181.32Кб |
93 |
214.02Кб |
94 |
518.94Кб |
95 |
544.52Кб |
96 |
766.12Кб |
97 |
769.92Кб |
98 |
855.41Кб |
99 |
677.29Кб |
TutsNode.com.txt |
63б |