Общая информация
Название The Complete Deep Learning Course 2021 With 7+ Real Projects
Тип
Размер 6.26Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[TGx]Downloaded from torrentgalaxy.to .txt 585б
0 72б
001 Course Structure.en.srt 1.61Кб
001 Course Structure.mp4 15.03Мб
002 How To Make The Most Out Of This Course.en.srt 2.54Кб
002 How To Make The Most Out Of This Course.mp4 8.20Мб
003 What is Neuron.en.srt 1.86Кб
003 What is Neuron.mp4 7.22Мб
004 What is Deep Learning.en.srt 1.41Кб
004 What is Deep Learning.mp4 18.49Мб
005 What is ANN.en.srt 4.38Кб
005 What is ANN.mp4 18.25Мб
006 What is Tensorflow and how to install it.en.srt 2.31Кб
006 What is Tensorflow and how to install it.mp4 20.51Мб
007 Important note about tools in this course.en.srt 1.76Кб
007 Important note about tools in this course.mp4 5.09Мб
008 Multilayer Neural Network.en.srt 7.19Кб
008 Multilayer Neural Network.mp4 40.28Мб
009 Introduction to Pandas and visualization.en.srt 11.85Кб
009 Introduction to Pandas and visualization.mp4 61.06Мб
010 Data Preprocessing by Pandas.en.srt 10.29Кб
010 Data Preprocessing by Pandas.mp4 60.18Мб
011 (OPTIONAL) Anaconda Installation.en.srt 2.54Кб
011 (OPTIONAL) Anaconda Installation.mp4 26.24Мб
012 Some Of The Important Terms In Neural Network.en.srt 11.76Кб
012 Some Of The Important Terms In Neural Network.mp4 105.91Мб
013 What is activation function.en.srt 1.50Кб
013 What is activation function.mp4 7.60Мб
014 What is sigmoid function.en.srt 1.55Кб
014 What is sigmoid function.mp4 3.25Мб
015 What is tanh function.en.srt 1.17Кб
015 What is tanh function.mp4 2.39Мб
016 What is Rectified Linear Unit function.en.srt 875б
016 What is Rectified Linear Unit function.mp4 2.25Мб
017 What is Leaky ReLU function.en.srt 875б
017 What is Leaky ReLU function.mp4 2.25Мб
018 What is The Exponential Linear Unit Function.en.srt 853б
018 What is The Exponential Linear Unit Function.mp4 1.86Мб
019 What is The Swish function.en.srt 2.00Кб
019 What is The Swish function.mp4 3.74Мб
020 What is The Softmax function.en.srt 1.27Кб
020 What is The Softmax function.mp4 2.40Мб
021 Activation-function.ipynb 2.50Кб
021 Time to code all the activation functions.en.srt 7.16Кб
021 Time to code all the activation functions.mp4 36.90Мб
022 Introduction to the project.en.srt 1.99Кб
022 Introduction to the project.mp4 13.43Мб
023 ConcreteData.xlsx 69.19Кб
023 Importing Data and Libraries.en.srt 8.67Кб
023 Importing Data and Libraries.mp4 54.32Мб
024 Exploratory analysis.en.srt 2.74Кб
024 Exploratory analysis.mp4 15.27Мб
025 Data Visualization.en.srt 12.00Кб
025 Data Visualization.mp4 89.64Мб
026 Data scaling.en.srt 7.94Кб
026 Data scaling.mp4 48.89Мб
027 Building Neural Network model.en.srt 21.64Кб
027 Building Neural Network model.mp4 162.55Мб
028 Evaluating the model.en.srt 5.42Кб
028 Evaluating the model.mp4 41.00Мб
029 Concrete-project.ipynb 1.35Мб
029 Improving the model.en.srt 23.61Кб
029 Improving the model.mp4 189.93Мб
030 Project Summary.en.srt 3.62Кб
030 Project Summary.mp4 28.24Мб
031 Convolution Neural Network.en.srt 7.97Кб
031 Convolution Neural Network.mp4 44.17Мб
032 Convolution Layers.en.srt 4.25Кб
032 Convolution Layers.mp4 16.16Мб
033 Pooling Layers.en.srt 4.15Кб
033 Pooling Layers.mp4 20.86Мб
034 Introduction to the project.en.srt 787б
034 Introduction to the project.mp4 6.40Мб
035 Importing library and data.en.srt 8.51Кб
035 Importing library and data.mp4 64.62Мб
036 Compiling the model.en.srt 10.62Кб
036 Compiling the model.mp4 115.58Мб
037 Training Neural Network.en.srt 9.80Кб
037 Training Neural Network.mp4 92.03Мб
038 Results.en.srt 5.93Кб
038 Results.mp4 43.24Мб
039 Cifar-10-Udemy.ipynb 250.39Кб
039 Visualizing filters.en.srt 8.93Кб
039 Visualizing filters.mp4 75.38Мб
040 Summary of the project.en.srt 3.22Кб
040 Summary of the project.mp4 23.36Мб
041 Introduction to the project.en.srt 2.77Кб
041 Introduction to the project.mp4 18.25Мб
042 Importing library and data.en.srt 6.58Кб
042 Importing library and data.mp4 45.42Мб
043 Visualizing data.en.srt 4.06Кб
043 Visualizing data.mp4 37.41Мб
044 Building Neural Network model.en.srt 14.76Кб
044 Building Neural Network model.mp4 120.94Мб
045 Training and Testing Model.en.srt 12.44Кб
045 Training and Testing Model.mp4 120.30Мб
046 Visualizing Convolutional Filters.en.srt 5.21Кб
046 Visualizing Convolutional Filters.mp4 32.30Мб
047 Improving the clothing image classifier with data augmentation.en.srt 13.66Кб
047 Improving the clothing image classifier with data augmentation.mp4 152.37Мб
047 Udemy-clothing-image.ipynb 103.76Кб
048 Summary of the project.en.srt 5.97Кб
048 Summary of the project.mp4 49.32Мб
049 Basic Introduction to RNN.en.srt 8.00Кб
049 Basic Introduction to RNN.mp4 37.62Мб
050 Fully Recurrent Neural Networks and Recursive Neural Networks.en.srt 2.09Кб
050 Fully Recurrent Neural Networks and Recursive Neural Networks.mp4 10.93Мб
051 Hopfield Recurrent Neural Networks and Elman Neural Networks.en.srt 4.75Кб
051 Hopfield Recurrent Neural Networks and Elman Neural Networks.mp4 25.81Мб
052 Long Short-term Memory Network.en.srt 4.40Кб
052 Long Short-term Memory Network.mp4 19.37Мб
053 Sentiment analysis basic concepts.en.srt 5.86Кб
053 Sentiment analysis basic concepts.mp4 38.14Мб
054 Sentiment analysis techniques.en.srt 2.27Кб
054 Sentiment analysis techniques.mp4 7.25Мб
055 The next challenges for sentiment analysis.en.srt 3.23Кб
055 The next challenges for sentiment analysis.mp4 11.40Мб
056 Lexicon and semantics analysis.en.srt 3.00Кб
056 Lexicon and semantics analysis.mp4 11.51Мб
057 Introduction to the project.en.srt 4.30Кб
057 Introduction to the project.mp4 34.37Мб
058 Importing library and data.en.srt 11.34Кб
058 Importing library and data.mp4 118.77Мб
059 Exploratory analysis.en.srt 12.44Кб
059 Exploratory analysis.mp4 96.12Мб
060 Visualizing data.en.srt 21.31Кб
060 Visualizing data.mp4 149.90Мб
061 Building RNN model.en.srt 23.74Кб
061 Building RNN model.mp4 207.15Мб
062 Exploring Results.en.srt 7.71Кб
062 Exploring Results.mp4 76.46Мб
062 Movie-Reviews-Udemy.ipynb 1.80Мб
063 Summary of the project.en.srt 1.95Кб
063 Summary of the project.mp4 22.73Мб
064 What is NLP.en.srt 3.44Кб
064 What is NLP.mp4 15.34Мб
065 NLP Applications.en.srt 4.19Кб
065 NLP Applications.mp4 21.17Мб
066 NLP tools Part 1.en.srt 16.54Кб
066 NLP tools Part 1.mp4 110.46Мб
067 NLP tools Part 2.en.srt 5.56Кб
067 NLP tools Part 2.mp4 37.02Мб
068 NLP tools Part 3.en.srt 4.02Кб
068 NLP tools Part 3.mp4 24.92Мб
068 NLTK-tools.ipynb 62.08Кб
069 NLP tools Part 4.en.srt 2.26Кб
069 NLP tools Part 4.mp4 10.65Мб
070 Introduction to the project.en.srt 1.09Кб
070 Introduction to the project.mp4 7.37Мб
071 Importing library and data.en.srt 15.09Кб
071 Importing library and data.mp4 107.86Мб
072 Exploring the newsgroups data.en.srt 7.71Кб
072 Exploring the newsgroups data.mp4 52.42Мб
073 Counting the occurrence of each word token.en.srt 13.76Кб
073 Counting the occurrence of each word token.mp4 92.14Мб
074 Text Preprocessing.en.srt 2.20Кб
074 Text Preprocessing.mp4 18.47Мб
075 Dropping Stop Words.en.srt 2.82Кб
075 Dropping Stop Words.mp4 20.40Мб
076 Reducing inflectional and derivational forms of words.en.srt 7.24Кб
076 Reducing inflectional and derivational forms of words.mp4 69.30Мб
077 What Is Dimensionality Reduction_.en.srt 5.77Кб
077 What Is Dimensionality Reduction_.mp4 50.99Мб
078 T-SNE for Dimensionality Reduction.en.srt 16.66Кб
078 T-SNE for Dimensionality Reduction.mp4 155.24Мб
078 Udemy-Newsgroup-project.ipynb 356.28Кб
079 Summary of the project.en.srt 3.19Кб
079 Summary of the project.mp4 34.42Мб
080 Autoencoder introduction.en.srt 6.26Кб
080 Autoencoder introduction.mp4 47.59Мб
081 Principle of Autoencoder.en.srt 5.46Кб
081 Principle of Autoencoder.mp4 39.35Мб
082 Importing library and data.en.srt 6.34Кб
082 Importing library and data.mp4 57.31Мб
083 IMPORTANT note.html 2.53Кб
084 Build autoencoder model.en.srt 10.57Кб
084 Build autoencoder model.mp4 96.27Мб
085 Reconstructing the input.en.srt 5.45Кб
085 Reconstructing the input.mp4 45.14Мб
086 Train the autoencoder model.en.srt 6.59Кб
086 Train the autoencoder model.mp4 52.01Мб
087 Summary of the autoencoder model.en.srt 6.20Кб
087 Summary of the autoencoder model.mp4 46.83Мб
088 Visualizing latent vector PART 1.en.srt 10.73Кб
088 Visualizing latent vector PART 1.mp4 93.82Мб
089 Visualizing latent vector PART 2.en.srt 8.98Кб
089 Visualizing latent vector PART 2.mp4 95.15Мб
090 Analysing Results.en.srt 3.29Кб
090 Analysing Results.mp4 30.59Мб
090 Udemy-Autoencoder-Implementation.ipynb 894.53Кб
091 Summary of the project.en.srt 1.97Кб
091 Summary of the project.mp4 21.40Мб
091 Udemy-Autoencoder-Implementation.ipynb 894.53Кб
092 Denoising autoencoders Implementation Part 1.en.srt 5.36Кб
092 Denoising autoencoders Implementation Part 1.mp4 38.02Мб
093 Denoising autoencoders Implementation Part 2.en.srt 4.23Кб
093 Denoising autoencoders Implementation Part 2.mp4 50.97Мб
094 Denoising autoencoders Implementation Part 3.en.srt 4.71Кб
094 Denoising autoencoders Implementation Part 3.mp4 48.53Мб
095 Denoising autoencoders Implementation Part 4.en.srt 4.58Кб
095 Denoising autoencoders Implementation Part 4.mp4 47.55Мб
096 Denoising autoencoders Implementation Part 5.en.srt 2.96Кб
096 Denoising autoencoders Implementation Part 5.mp4 27.19Мб
097 Denoising autoencoders Implementation Part 6.en.srt 9.03Кб
097 Denoising autoencoders Implementation Part 6.mp4 89.10Мб
097 Udemy-Denoising-autoencoders.ipynb 105.19Кб
098 What is GAN.en.srt 2.02Кб
098 What is GAN.mp4 11.41Мб
099 GAN Implementation Part 1.en.srt 9.65Кб
099 GAN Implementation Part 1.mp4 80.80Мб
1 53б
10 137.29Кб
100 749.51Кб
100 GAN Implementation Part 2.en.srt 5.13Кб
100 GAN Implementation Part 2.mp4 54.37Мб
101 992.20Кб
101 GAN Implementation Part 3.en.srt 11.10Кб
101 GAN Implementation Part 3.mp4 116.41Мб
102 535.25Кб
102 GAN Implementation Part 4.en.srt 7.15Кб
102 GAN Implementation Part 4.mp4 53.42Мб
103 797.21Кб
103 GAN Implement Part 5.en.srt 6.78Кб
103 GAN Implement Part 5.mp4 66.75Мб
103 Udemy-GAN-Implementation.ipynb 242.29Кб
104 587.68Кб
104 Deep Convolutional GAN (DCGAN) Implementation Part 1.en.srt 10.10Кб
104 Deep Convolutional GAN (DCGAN) Implementation Part 1.mp4 72.82Мб
105 595.45Кб
105 Deep Convolutional GAN (DCGAN) Implementation Part 2.en.srt 6.12Кб
105 Deep Convolutional GAN (DCGAN) Implementation Part 2.mp4 58.58Мб
106 60.99Кб
106 Deep Convolutional GAN (DCGAN) Implementation Part 3.en.srt 7.47Кб
106 Deep Convolutional GAN (DCGAN) Implementation Part 3.mp4 85.51Мб
107 497.66Кб
107 Deep Convolutional GAN (DCGAN) Implementation Part 4.en.srt 7.99Кб
107 Deep Convolutional GAN (DCGAN) Implementation Part 4.mp4 68.36Мб
107 Deep-Convolutional-GAN-DCGAN.ipynb 63.43Кб
108 524.39Кб
108 Deep-Convolutional-GAN-DCGAN-1.ipynb 204.36Кб
108 Summary of the project.en.srt 2.59Кб
108 Summary of the project.mp4 27.54Мб
109 607.66Кб
109 Introduction to RBMs.en.srt 1.19Кб
109 Introduction to RBMs.mp4 5.29Мб
11 601.58Кб
110 614.50Кб
110 BMs and RBMs.en.srt 3.22Кб
110 BMs and RBMs.mp4 14.22Мб
111 906.35Кб
111 Bernoulli RBMs.en.srt 2.58Кб
111 Bernoulli RBMs.mp4 11.11Мб
112 69.30Кб
112 Restricted Boltzman Machine Implementation Part 1.en.srt 8.30Кб
112 Restricted Boltzman Machine Implementation Part 1.mp4 64.69Мб
113 363.18Кб
113 Restricted Boltzman Machine Implementation Part 3.en.srt 3.68Кб
113 Restricted Boltzman Machine Implementation Part 3.mp4 26.23Мб
113 UDEMY-Restricted-Boltzman-Machine-Implementation.ipynb 147.30Кб
114 815.84Кб
114 Restricted Boltzman Machine Implementation Part 2.en.srt 6.03Кб
114 Restricted Boltzman Machine Implementation Part 2.mp4 46.91Мб
115 407.41Кб
115 Summary of the project.en.srt 2.80Кб
115 Summary of the project.mp4 18.82Мб
116 649.01Кб
116 What is Deep Reinforcement Learning.en.srt 2.69Кб
116 What is Deep Reinforcement Learning.mp4 11.49Мб
117 768.53Кб
117 Deep Reinforcement Learning.en.srt 4.83Кб
117 Deep Reinforcement Learning.mp4 18.79Мб
118 802.51Кб
118 Reward.en.srt 5.99Кб
118 Reward.mp4 25.97Мб
119 618.32Кб
119 The agent and The environment.en.srt 2.91Кб
119 The agent and The environment.mp4 13.42Мб
12 430.46Кб
120 723.60Кб
120 Why Reinforcement Learning_.en.srt 3.50Кб
120 Why Reinforcement Learning_.mp4 14.48Мб
121 931.67Кб
121 Introduction to Monte Carlo Method.en.srt 3.92Кб
121 Introduction to Monte Carlo Method.mp4 21.51Мб
122 270.07Кб
122 Basic concepts of the Monte Carlo simulation and Monte Carlo Applications.en.srt 5.52Кб
122 Basic concepts of the Monte Carlo simulation and Monte Carlo Applications.mp4 26.67Мб
123 763.48Кб
123 Introduction to the project.en.srt 2.61Кб
123 Introduction to the project.mp4 12.94Мб
124 612.30Кб
124 AMZN.csv 318.07Кб
124 Importing library and data.en.srt 9.30Кб
124 Importing library and data.mp4 69.13Мб
125 625.06Кб
125 Exploratory analysis.en.srt 19.65Кб
125 Exploratory analysis.mp4 108.01Мб
126 763.62Кб
126 Monte Carlo Simulation- Theory.en.srt 13.07Кб
126 Monte Carlo Simulation- Theory.mp4 117.87Мб
127 772.37Кб
127 Monte Carlo Simulation-Implementation Part 1.en.srt 16.42Кб
127 Monte Carlo Simulation-Implementation Part 1.mp4 134.57Мб
128 145.98Кб
128 Monte Carlo Simulation-Implementation Part 2.en.srt 4.01Кб
128 Monte Carlo Simulation-Implementation Part 2.mp4 35.84Мб
128 Udemy-stock-price-prediction.ipynb 132.27Кб
129 200.00Кб
129 Summary of the project.en.srt 1.94Кб
129 Summary of the project.mp4 19.91Мб
13 551.23Кб
130 SMS Spam Detection (Available on May).html 956б
131 Extra Link.html 1.03Кб
132 Thank you.en.srt 1.69Кб
132 Thank you.mp4 23.31Мб
14 1011.93Кб
15 138.42Кб
16 96.42Кб
17 746.01Кб
18 897.25Кб
19 867.88Кб
2 420б
20 189.06Кб
21 883.82Кб
22 990.32Кб
23 368.67Кб
24 926.38Кб
25 505.21Кб
26 202.77Кб
27 555.94Кб
28 636.40Кб
29 188.31Кб
3 579.54Кб
30 716.08Кб
31 886.50Кб
32 659.95Кб
33 257.62Кб
34 315.98Кб
35 387.63Кб
36 963.26Кб
37 843.92Кб
38 430.14Кб
39 707.67Кб
4 643.06Кб
40 644.27Кб
41 694.27Кб
42 597.61Кб
43 597.18Кб
44 1014.33Кб
45 12.98Кб
46 30.71Кб
47 694.30Кб
48 111.52Кб
49 481.32Кб
5 103.38Кб
50 417.54Кб
51 462.02Кб
52 96.30Кб
53 171.96Кб
54 598.47Кб
55 881.47Кб
56 847.25Кб
57 780.40Кб
58 1018.89Кб
59 734.25Кб
6 443.77Кб
60 670.27Кб
61 882.86Кб
62 1001.56Кб
63 392.21Кб
64 600.38Кб
65 1006.48Кб
66 104.06Кб
67 164.87Кб
68 594.27Кб
69 643.24Кб
7 64.06Кб
70 716.02Кб
71 418.15Кб
72 777.83Кб
73 475.06Кб
74 827.18Кб
75 340.18Кб
76 774.38Кб
77 783.92Кб
78 35.34Кб
79 196.20Кб
8 711.79Кб
80 85.00Кб
81 656.60Кб
82 711.64Кб
83 278.90Кб
84 502.75Кб
85 615.46Кб
86 850.99Кб
87 147.14Кб
88 502.28Кб
89 614.37Кб
9 239.93Кб
90 88.70Кб
91 649.75Кб
92 181.32Кб
93 214.02Кб
94 518.94Кб
95 544.52Кб
96 766.12Кб
97 769.92Кб
98 855.41Кб
99 677.29Кб
TutsNode.com.txt 63б
Статистика распространения по странам
Индия (IN) 3
Дания (DK) 1
Китай (CN) 1
Вьетнам (VN) 1
Австралия (AU) 1
Всего 7
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент