Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
13б |
1 |
42б |
1. [Hands On] - Data Input-Output - Upload Data.mp4 |
18.57Мб |
1. [Hands On] - Data Input-Output - Upload Data.srt |
8.24Кб |
1. [Hands On] - Tune Hyperparameter for Best Parameter Selection.mp4 |
21.92Мб |
1. [Hands On] - Tune Hyperparameter for Best Parameter Selection.srt |
9.94Кб |
1.1 Employee Dataset - Full.csv |
1.85Кб |
1.1 Links for datasets.pdf |
261.42Кб |
1. An Important Note..html |
347б |
1. A note on Anaconda and Spyder..html |
767б |
1. Azure ML Webservice - Prepare the experiment for webservice.mp4 |
5.56Мб |
1. Azure ML Webservice - Prepare the experiment for webservice.srt |
2.63Кб |
1. DP-100 Exam Curriculum.mp4 |
61.19Мб |
1. DP-100 Exam Curriculum.srt |
9.82Кб |
1. Feature Selection - Section Introduction.mp4 |
7.73Мб |
1. Feature Selection - Section Introduction.srt |
7.12Кб |
1. Introduction to AzureML SDK.mp4 |
26.86Мб |
1. Introduction to AzureML SDK.srt |
4.75Кб |
1. Logistic Regression - What is Logistic Regression.mp4 |
11.48Мб |
1. Logistic Regression - What is Logistic Regression.srt |
6.69Кб |
1. Section Introduction.mp4 |
5.41Мб |
1. Section Introduction.srt |
3.15Кб |
1. To be Added.html |
103б |
1. To be Added.html |
103б |
1. Understand the AzureMLService Architecture.mp4 |
34.91Мб |
1. Understand the AzureMLService Architecture.srt |
8.97Кб |
1. Way Forward.mp4 |
57.00Мб |
1. Way Forward.srt |
5.62Кб |
1. What is a Recommendation System.mp4 |
34.96Мб |
1. What is a Recommendation System.srt |
16.74Кб |
1. What is Cloud Computing.mp4 |
34.84Мб |
1. What is Cloud Computing.srt |
8.81Кб |
1. What is Cluster Analysis.mp4 |
22.38Мб |
1. What is Cluster Analysis.srt |
11.17Кб |
1. What is Linear Regression.mp4 |
14.03Мб |
1. What is Linear Regression.srt |
5.98Кб |
1. What is Text Analytics or Natural Language Processing.mp4 |
40.70Мб |
1. What is Text Analytics or Natural Language Processing.srt |
8.35Кб |
1. What You Will Learn in This Section.mp4 |
12.39Мб |
1. What You Will Learn in This Section.mp4 |
4.34Мб |
1. What You Will Learn in This Section.srt |
2.65Кб |
1. What You Will Learn in This Section.srt |
2.40Кб |
10 |
866.52Кб |
10. [Hands On] - Decision Tree - Experiment Boosted Decision Tree.mp4 |
17.28Мб |
10. [Hands On] - Decision Tree - Experiment Boosted Decision Tree.srt |
6.53Кб |
10. [Hands On] Two-Class Boosted Decision Tree - Build Bank Telemarketing Prediction.mp4 |
25.16Мб |
10. [Hands On] Two-Class Boosted Decision Tree - Build Bank Telemarketing Prediction.srt |
10.27Кб |
10.1 050 - Summarise the data.py |
546б |
10.1 160 - Run a script and Log metrics.py |
1.74Кб |
10.1 50 - Lists.py |
900б |
10.1 Bank Telemarketing.csv |
4.70Мб |
10. Basics of Machine Learning.html |
140б |
10. Create Summary Statistics using describe.mp4 |
71.56Мб |
10. Create Summary Statistics using describe.srt |
7.40Кб |
10. Data Normalization - Scale and Reduce.mp4 |
5.33Мб |
10. Data Normalization - Scale and Reduce.srt |
3.03Кб |
10. Python Lists - Operations Part 1.mp4 |
25.08Мб |
10. Python Lists - Operations Part 1.srt |
3.91Кб |
10. Run a sample experiment using AzureML SDK - Part 1.mp4 |
61.73Мб |
10. Run a sample experiment using AzureML SDK - Part 1.srt |
7.97Кб |
10. Understanding the AzureML Compute Resources.mp4 |
40.77Мб |
10. Understanding the AzureML Compute Resources.srt |
8.26Кб |
100 |
145.76Кб |
101 |
274.82Кб |
102 |
549.06Кб |
103 |
552.61Кб |
104 |
612.29Кб |
105 |
669.02Кб |
106 |
98.12Кб |
107 |
857.71Кб |
108 |
943.66Кб |
109 |
788.92Кб |
11 |
522.38Кб |
11. [Hands On] - Data Normalization.mp4 |
5.89Мб |
11. [Hands On] - Data Normalization.srt |
2.47Кб |
11.1 060 - Outlier Detection and clipping.py |
725б |
11. Clip Values - Remove Outliers using Constants.mp4 |
41.85Мб |
11. Clip Values - Remove Outliers using Constants.srt |
5.65Кб |
11. Create a Compute Cluster and Compute Instance.mp4 |
48.55Мб |
11. Create a Compute Cluster and Compute Instance.srt |
6.84Кб |
11. Decision Forest - Parameters Explained.mp4 |
5.79Мб |
11. Decision Forest - Parameters Explained.srt |
3.88Кб |
11. Python Lists - Operations Part 2.mp4 |
17.31Мб |
11. Python Lists - Operations Part 2.srt |
2.17Кб |
11. Regression Analysis.html |
141б |
11. Run a sample experiment using AzureML SDK - Part 2.mp4 |
94.15Мб |
11. Run a sample experiment using AzureML SDK - Part 2.srt |
10.11Кб |
110 |
939.78Кб |
111 |
305.97Кб |
112 |
633.46Кб |
113 |
945.00Кб |
114 |
79.27Кб |
115 |
251.26Кб |
116 |
351.13Кб |
117 |
470.57Кб |
118 |
983.94Кб |
119 |
435.76Кб |
12 |
979.16Кб |
12. [Hands On] - Two Class Decision Forest - Adult Census Income Prediction.mp4 |
35.09Мб |
12. [Hands On] - Two Class Decision Forest - Adult Census Income Prediction.srt |
14.52Кб |
12. Clip Values - Remove Outliers with Percentiles.mp4 |
72.63Мб |
12. Clip Values - Remove Outliers with Percentiles.srt |
7.38Кб |
12. Multidimensional Lists in Python.mp4 |
27.45Мб |
12. Multidimensional Lists in Python.srt |
4.23Кб |
12. PCA - What is PCA and Curse of Dimensionality.mp4 |
10.73Мб |
12. PCA - What is PCA and Curse of Dimensionality.srt |
6.39Кб |
12. Run a script in Azureml environment - Part 1.mp4 |
27.63Мб |
12. Run a script in Azureml environment - Part 1.srt |
4.62Кб |
12. What is an AzureML Pipeline.mp4 |
26.46Мб |
12. What is an AzureML Pipeline.srt |
6.06Кб |
120 |
444.38Кб |
121 |
525.33Кб |
122 |
657.12Кб |
123 |
924.17Кб |
124 |
354.15Кб |
125 |
569.35Кб |
126 |
704.04Кб |
127 |
732.18Кб |
128 |
434.08Кб |
129 |
475.14Кб |
13 |
11.98Кб |
13. [Hands On] - Decision Tree - Multi Class Decision Forest IRIS Data.mp4 |
18.57Мб |
13. [Hands On] - Decision Tree - Multi Class Decision Forest IRIS Data.srt |
8.22Кб |
13. [Hands On] - Principal Component Analysis.mp4 |
7.40Мб |
13. [Hands On] - Principal Component Analysis.srt |
3.71Кб |
13.1 070 - Write to a delimited file.py |
417б |
13.1 IRIS Dataset Link.txt |
74б |
13. Convert and Save a delimited file using Pandas.mp4 |
71.74Мб |
13. Convert and Save a delimited file using Pandas.srt |
7.00Кб |
13. Create a Pipeline using AzureML Designer.mp4 |
94.35Мб |
13. Create a Pipeline using AzureML Designer.srt |
11.60Кб |
13. Run a script in Azureml environment - Part 2.mp4 |
67.72Мб |
13. Run a script in Azureml environment - Part 2.srt |
6.67Кб |
13. Slicing a multidimensional list.mp4 |
41.75Мб |
13. Slicing a multidimensional list.srt |
5.77Кб |
130 |
79.47Кб |
131 |
474.71Кб |
132 |
745.60Кб |
133 |
911.41Кб |
134 |
79.43Кб |
135 |
107.47Кб |
136 |
456.63Кб |
137 |
686.85Кб |
138 |
755.66Кб |
139 |
804.41Кб |
14 |
485.77Кб |
14.1 080 - Normalize the data.py |
792б |
14.1 60 - tuples.py |
137б |
14. Data Normalization.mp4 |
122.41Мб |
14. Data Normalization.srt |
11.35Кб |
14. Join Data - Join Multiple Datasets based on common keys.mp4 |
10.48Мб |
14. Join Data - Join Multiple Datasets based on common keys.srt |
6.26Кб |
14. Python Tuples.mp4 |
13.67Мб |
14. Python Tuples.srt |
3.80Кб |
14. Run a script in Azureml environment - Part 3.mp4 |
81.78Мб |
14. Run a script in Azureml environment - Part 3.srt |
8.14Кб |
14. Submit the Designer Pipeline run.mp4 |
89.94Мб |
14. Submit the Designer Pipeline run.srt |
11.65Кб |
14. SVM - What is Support Vector Machine.mp4 |
14.90Мб |
14. SVM - What is Support Vector Machine.srt |
3.65Кб |
140 |
989.55Кб |
141 |
90.35Кб |
142 |
178.29Кб |
143 |
237.61Кб |
144 |
335.24Кб |
145 |
396.24Кб |
146 |
703.09Кб |
147 |
795.40Кб |
148 |
834.05Кб |
149 |
897.62Кб |
15 |
57.70Кб |
15. [Hands On] - Join Data - Experiment.mp4 |
15.11Мб |
15. [Hands On] - Join Data - Experiment.srt |
2.77Кб |
15. [Hands On] - SVM - Adult Census Income Prediction.mp4 |
13.83Мб |
15. [Hands On] - SVM - Adult Census Income Prediction.srt |
5.72Кб |
15.1 090 - Label encoding.py |
743б |
15.1 EmpDeptJC.csv |
108б |
15.2 EmpSalaryJC.csv |
110б |
15. Create an Inference Pipeline.mp4 |
66.71Мб |
15. Create an Inference Pipeline.srt |
8.56Кб |
15. Label Encoding of String Categorical data.mp4 |
84.99Мб |
15. Label Encoding of String Categorical data.srt |
9.00Кб |
15. Python Dictionary.mp4 |
14.26Мб |
15. Python Dictionary.srt |
3.60Кб |
15. Run a script in Azureml environment - Part 4.mp4 |
59.64Мб |
15. Run a script in Azureml environment - Part 4.srt |
7.94Кб |
150 |
961.91Кб |
151 |
93.18Кб |
152 |
98.09Кб |
153 |
350.17Кб |
154 |
423.65Кб |
155 |
626.05Кб |
156 |
745.44Кб |
157 |
779.91Кб |
158 |
848.50Кб |
159 |
926.82Кб |
16 |
142.25Кб |
16.1 70 - dictionary.py |
812б |
16. Classification Quiz.html |
140б |
16. Deploy a real-time endpoint using Designer.mp4 |
66.57Мб |
16. Deploy a real-time endpoint using Designer.srt |
9.46Кб |
16. Python Dictionary Hands on Part 1.mp4 |
32.05Мб |
16. Python Dictionary Hands on Part 1.srt |
4.49Кб |
16. Run a script in Azureml environment - Part 5.mp4 |
56.58Мб |
16. Run a script in Azureml environment - Part 5.srt |
6.31Кб |
16. Why Hot encoding is required.mp4 |
12.66Мб |
16. Why Hot encoding is required.srt |
3.50Кб |
160 |
277.25Кб |
161 |
309.94Кб |
162 |
520.34Кб |
163 |
528.19Кб |
164 |
760.29Кб |
165 |
56.56Кб |
166 |
149.17Кб |
167 |
244.62Кб |
168 |
275.42Кб |
169 |
527.62Кб |
17 |
695.95Кб |
17.1 100 - Create Dummy Variables.py |
341б |
17. Create a batch inference pipeline using Designer.mp4 |
61.84Мб |
17. Create a batch inference pipeline using Designer.srt |
8.34Кб |
17. DP-100 Exam Coverage So far..mp4 |
13.91Мб |
17. DP-100 Exam Coverage So far..srt |
2.40Кб |
17. Hot Encoding using Pandas get_dummies.mp4 |
37.65Мб |
17. Hot Encoding using Pandas get_dummies.srt |
4.12Кб |
17. Python Dictionary Hands on Part 2.mp4 |
30.79Мб |
17. Python Dictionary Hands on Part 2.srt |
3.94Кб |
170 |
700.87Кб |
171 |
839.59Кб |
172 |
733.48Кб |
173 |
880.43Кб |
174 |
276.37Кб |
175 |
618.65Кб |
176 |
990.51Кб |
177 |
299.36Кб |
178 |
309.74Кб |
179 |
615.62Кб |
18 |
1014.58Кб |
18.1 110 - Split Data.py |
903б |
18. Python Functions.mp4 |
16.54Мб |
18. Python Functions.srt |
5.32Кб |
18. Run a Batch Inference Pipeline from Designer.mp4 |
42.12Мб |
18. Run a Batch Inference Pipeline from Designer.srt |
4.94Кб |
18. Split The Data for training and testing.mp4 |
107.48Мб |
18. Split The Data for training and testing.srt |
11.02Кб |
18. Train and Run a Model Script in AzureML Part 1.mp4 |
45.38Мб |
18. Train and Run a Model Script in AzureML Part 1.srt |
6.26Кб |
180 |
640.04Кб |
181 |
642.84Кб |
182 |
110.21Кб |
183 |
219.52Кб |
184 |
449.02Кб |
185 |
604.88Кб |
186 |
685.67Кб |
187 |
306.77Кб |
188 |
318.02Кб |
189 |
673.56Кб |
19 |
46.87Кб |
19.1 80 - Functions.py |
550б |
19. Build Logistic Regression using Python - Part 1.mp4 |
44.07Мб |
19. Build Logistic Regression using Python - Part 1.srt |
4.33Кб |
19. Python Functions - Hands on.mp4 |
33.67Мб |
19. Python Functions - Hands on.srt |
4.76Кб |
19. Train and Run a Model Script in AzureML Part 2.mp4 |
90.53Мб |
19. Train and Run a Model Script in AzureML Part 2.srt |
9.19Кб |
190 |
695.00Кб |
191 |
616.60Кб |
192 |
926.62Кб |
193 |
53.74Кб |
194 |
168.66Кб |
195 |
186.60Кб |
196 |
330.15Кб |
197 |
772.44Кб |
198 |
990.46Кб |
199 |
160.40Кб |
2 |
26б |
2. [Hands On] - Cluster Analysis Experiment 1.mp4 |
30.92Мб |
2. [Hands On] - Cluster Analysis Experiment 1.srt |
13.72Кб |
2. [Hands On] - Data Input-Output - Convert and Unpack.mp4 |
22.08Мб |
2. [Hands On] - Data Input-Output - Convert and Unpack.srt |
9.34Кб |
2. [Hands On] - Deploy Machine Learning Model As a Web Service.mp4 |
9.18Мб |
2. [Hands On] - Deploy Machine Learning Model As a Web Service.srt |
3.61Кб |
2. [Hands On] -Logistic Regression - Build Two-Class Loan Approval Prediction Model.mp4 |
52.20Мб |
2. [Hands On] -Logistic Regression - Build Two-Class Loan Approval Prediction Model.srt |
22.86Кб |
2.1 100 - Create Workspace and write config.py |
860б |
2.1 Callcenter Data.csv |
831б |
2.1 Employee Dataset - Full.zip |
773б |
2.1 Loan Approval Prediction.csv |
37.12Кб |
2. Bonus Lecture.html |
6.97Кб |
2. Create AzureML Workspace using SDK.mp4 |
63.77Мб |
2. Create AzureML Workspace using SDK.srt |
8.37Кб |
2. Create the AzureML Workspace.mp4 |
76.36Мб |
2. Create the AzureML Workspace.srt |
10.34Кб |
2. Data Preparation using Recommender Split.mp4 |
14.92Мб |
2. Data Preparation using Recommender Split.srt |
8.30Кб |
2. How to Summarize Data.mp4 |
11.70Мб |
2. How to Summarize Data.srt |
6.39Кб |
2. Hyperparameter Tuning.html |
140б |
2. Install Anaconda.mp4 |
41.69Мб |
2. Install Anaconda.srt |
5.72Кб |
2. Note on DP-100 Exam and New Studio.mp4 |
29.36Мб |
2. Note on DP-100 Exam and New Studio.srt |
5.31Кб |
2. Pearson Correlation Coefficient.mp4 |
47.22Мб |
2. Pearson Correlation Coefficient.srt |
7.51Кб |
2. Regression Analysis - Common Metrics.mp4 |
12.59Мб |
2. Regression Analysis - Common Metrics.srt |
6.35Кб |
2. Text Pre-Processing.mp4 |
54.61Мб |
2. Text Pre-Processing.srt |
15.18Кб |
2. What is Azure.mp4 |
18.10Мб |
2. What is Azure.srt |
4.34Кб |
2. What is Azure ML and high level architecture..mp4 |
7.03Мб |
2. What is Azure ML and high level architecture..srt |
3.92Кб |
2. What this section is about.mp4 |
10.76Мб |
2. What this section is about.srt |
2.40Кб |
20 |
14.44Кб |
20.1 120 - Logistic regression.py |
2.07Кб |
20.2 defaults.csv |
139.06Кб |
20. Build Logistic Regression using Python - Part 2.mp4 |
117.21Мб |
20. Build Logistic Regression using Python - Part 2.srt |
11.44Кб |
20. Global Vs Local Variables in Python.mp4 |
49.60Мб |
20. Global Vs Local Variables in Python.srt |
8.50Кб |
20. Train and Run a Model Script in AzureML Part 3.mp4 |
110.03Мб |
20. Train and Run a Model Script in AzureML Part 3.srt |
9.73Кб |
200 |
467.28Кб |
201 |
611.67Кб |
202 |
830.42Кб |
203 |
898.80Кб |
21 |
578.23Кб |
21. Train and Run a Model Script in AzureML Part 4.mp4 |
46.44Мб |
21. Train and Run a Model Script in AzureML Part 4.srt |
4.80Кб |
21. Types of Function Arguments.mp4 |
15.27Мб |
21. Types of Function Arguments.srt |
4.49Кб |
22 |
664.43Кб |
22.1 88 - Required Arguments.py |
520б |
22. Function Arguments - Required Arguments.mp4 |
52.39Мб |
22. Function Arguments - Required Arguments.srt |
7.01Кб |
22. Train and Run a Model Script in AzureML Part 5.mp4 |
92.49Мб |
22. Train and Run a Model Script in AzureML Part 5.srt |
8.90Кб |
23 |
788.25Кб |
23.1 210 - Provision Compute Cluster.py |
813б |
23.1 90 - Default Arguments.py |
571б |
23. Function Arguments - Default Arguments.mp4 |
41.81Мб |
23. Function Arguments - Default Arguments.srt |
5.92Кб |
23. Provisioning Compute Cluster using SDK.mp4 |
86.95Мб |
23. Provisioning Compute Cluster using SDK.srt |
10.75Кб |
24 |
220.48Кб |
24.1 92 - Keyword Arguments.py |
532б |
24. Automate Model Training using AzureML SDK.mp4 |
34.67Мб |
24. Automate Model Training using AzureML SDK.srt |
8.24Кб |
24. Function Arguments - Keyword Arguments.mp4 |
49.00Мб |
24. Function Arguments - Keyword Arguments.srt |
7.65Кб |
25 |
283.58Кб |
25. Automate Model Training - Define Pipeline Steps.mp4 |
89.32Мб |
25. Automate Model Training - Define Pipeline Steps.srt |
13.29Кб |
25. Object Oriented Programming.mp4 |
53.00Мб |
25. Object Oriented Programming.srt |
11.85Кб |
26 |
233.50Кб |
26.1 95 - class and objects.py |
593б |
26. Automate Model Training - Define Run Configuration.mp4 |
69.75Мб |
26. Automate Model Training - Define Run Configuration.srt |
7.03Кб |
26. Define a Class and Create an Object.mp4 |
79.77Мб |
26. Define a Class and Create an Object.srt |
15.15Кб |
27 |
653.65Кб |
27.1 220 - Pipeline Job.py |
3.35Кб |
27. Automate Model Training - Define Build and Run.mp4 |
45.57Мб |
27. Automate Model Training - Define Build and Run.srt |
5.45Кб |
27. Initialize the Class Attributes using __init__.mp4 |
63.89Мб |
27. Initialize the Class Attributes using __init__.srt |
8.65Кб |
28 |
845.89Кб |
28. Detour - Command Line Arguments.mp4 |
72.73Мб |
28. Detour - Command Line Arguments.srt |
10.81Кб |
28. Packages and Modules in Python.mp4 |
26.35Мб |
28. Packages and Modules in Python.srt |
5.96Кб |
29 |
888.61Кб |
29.1 220 - Dataprep Pipeline.py |
2.00Кб |
29. Automate Model Training - Create Dataprep Step.mp4 |
109.63Мб |
29. Automate Model Training - Create Dataprep Step.srt |
12.42Кб |
3 |
24б |
3. [Hands On] - Cluster Analysis Experiment 2 - Score and Evaluate.mp4 |
18.36Мб |
3. [Hands On] - Cluster Analysis Experiment 2 - Score and Evaluate.srt |
7.63Кб |
3. [Hands On] - Data Input-Output - Import Data.mp4 |
13.12Мб |
3. [Hands On] - Data Input-Output - Import Data.srt |
6.59Кб |
3. [Hands On] - Linear Regression model using OLS.mp4 |
91.04Мб |
3. [Hands On] - Linear Regression model using OLS.srt |
11.26Кб |
3. [Hands On] - Summarize Data - Experiment.mp4 |
8.14Мб |
3. [Hands On] - Summarize Data - Experiment.srt |
3.25Кб |
3. [Hands On] - Use the Web Service - Example of Excel.mp4 |
16.58Мб |
3. [Hands On] - Use the Web Service - Example of Excel.srt |
7.02Кб |
3.1 010 - Pandas part 1.py |
1.08Кб |
3.10 Section 10 - Feature Selection.pdf |
2.95Мб |
3.11 Section 04 - Classification - 003 - SVM.pdf |
1.12Мб |
3.12 Section 04 - Classification - 002 - Decision Tree.pdf |
3.40Мб |
3.13 Section 11 - Recommendation System.pdf |
3.10Мб |
3.14 Section - Text Analytics.pdf |
2.03Мб |
3.15 Section 05 - Tune Hyperparameter.pdf |
1.19Мб |
3.1 Adult Dataset URL.txt |
74б |
3.1 Section 02 - Getting Started with AzureML.pdf |
2.68Мб |
3.2 Section 08 - Clustering.pdf |
1.54Мб |
3.3 Section 06 - Deploy Webservice.pdf |
702.45Кб |
3.4 Section 04 - Classification - 001 - Logistic Regression.pdf |
1.40Мб |
3.5 Section 09 - Data Processing.pdf |
2.84Мб |
3.6 All Data Files.zip |
632.49Кб |
3.7 Section 01 - Basics of Machine Learning.pdf |
1.84Мб |
3.8 Section 07 - Regression.pdf |
2.82Мб |
3.9 Section 03 - Data Pre-processing.pdf |
1.01Мб |
3. Azure Basic Terms and Concepts.mp4 |
24.23Мб |
3. Azure Basic Terms and Concepts.srt |
5.46Кб |
3. Bag Of Words and N-Gram Models for Text features.mp4 |
49.96Мб |
3. Bag Of Words and N-Gram Models for Text features.srt |
8.59Кб |
3. Chi Square Test of Independence.mp4 |
8.28Мб |
3. Chi Square Test of Independence.srt |
6.22Кб |
3. Creating a Free Azure ML Account.mp4 |
23.70Мб |
3. Creating a Free Azure ML Account.srt |
3.66Кб |
3. Hello World and Know your environment.mp4 |
29.64Мб |
3. Hello World and Know your environment.srt |
5.58Кб |
3. Logistic Regression - Understand Parameters and Their Impact.mp4 |
19.54Мб |
3. Logistic Regression - Understand Parameters and Their Impact.srt |
12.96Кб |
3. Pandas - Import Data for Experiments.mp4 |
70.57Мб |
3. Pandas - Import Data for Experiments.srt |
7.00Кб |
3. The course slides as well as Data Files for all sections.html |
362б |
3. Verify the Workspace and Write the Workspace Config File.mp4 |
26.73Мб |
3. Verify the Workspace and Write the Workspace Config File.srt |
3.29Кб |
3. View and Manage Workspace Settings.mp4 |
44.43Мб |
3. View and Manage Workspace Settings.srt |
5.57Кб |
3. What is Matchbox Recommender and Train Matchbox Recommender.mp4 |
14.55Мб |
3. What is Matchbox Recommender and Train Matchbox Recommender.srt |
8.28Кб |
30 |
1016.64Кб |
30.1 220 - Training Pipeline.py |
3.00Кб |
30. Automate Model Training - Create Training Step.mp4 |
36.28Мб |
30. Automate Model Training - Create Training Step.srt |
3.44Кб |
31 |
277.92Кб |
31. Run the pipeline and see the results.mp4 |
83.23Мб |
31. Run the pipeline and see the results.srt |
9.97Кб |
32 |
374.89Кб |
33 |
267.87Кб |
34 |
448.77Кб |
35 |
443.05Кб |
36 |
257.89Кб |
37 |
292.32Кб |
38 |
288.26Кб |
39 |
299.29Кб |
4 |
11б |
4. [Hands On] -Data Transform - Add RowsColumns, Remove Duplicates, Select Columns.mp4 |
26.46Мб |
4. [Hands On] -Data Transform - Add RowsColumns, Remove Duplicates, Select Columns.srt |
12.00Кб |
4. [Hands On] - Linear Regression - R Squared.mp4 |
10.32Мб |
4. [Hands On] - Linear Regression - R Squared.srt |
4.36Кб |
4.1 004 - Logistic Regression - Understanding the results.xlsx |
23.96Кб |
4.1 110 - Create Datastore.py |
918б |
4.1 Employee Dataset - TSV.txt |
1.85Кб |
4.2 Employee Dataset - AR2.csv |
1.34Кб |
4.3 Employee Dataset - AC1.csv |
1.62Кб |
4.4 Employee Dataset - AC2.csv |
260б |
4.5 Employee Dataset - AR1.csv |
672б |
4. Azure ML Studio Overview and walk-through.mp4 |
12.17Мб |
4. Azure ML Studio Overview and walk-through.srt |
5.18Кб |
4. AzureML Web Service.html |
141б |
4. Azure Storage and Data Resource.mp4 |
34.37Мб |
4. Azure Storage and Data Resource.srt |
9.70Кб |
4. Clustering or Cluster Analysis.html |
141б |
4. Create and Register a Datastore using AzureML SDK.mp4 |
101.25Мб |
4. Create and Register a Datastore using AzureML SDK.srt |
10.12Кб |
4. Feature Hashing.mp4 |
75.17Мб |
4. Feature Hashing.srt |
14.55Кб |
4. How to Score the Matchbox Recommender.mp4 |
10.94Мб |
4. How to Score the Matchbox Recommender.srt |
5.93Кб |
4. Important Message About Udemy Reviews.mp4 |
4.69Мб |
4. Important Message About Udemy Reviews.srt |
4.18Кб |
4. Kendall Correlation Coefficient.mp4 |
6.70Мб |
4. Kendall Correlation Coefficient.srt |
4.58Кб |
4. Outliers Treatment - Clip Values.mp4 |
11.49Мб |
4. Outliers Treatment - Clip Values.srt |
6.67Кб |
4. Overview of New AzureML Studio.mp4 |
83.35Мб |
4. Overview of New AzureML Studio.srt |
11.19Кб |
4. Pandas - Import Data Part 2.mp4 |
50.42Мб |
4. Pandas - Import Data Part 2.srt |
5.06Кб |
4. Understanding the Confusion Matrix, AUC, Accuracy, Precision, Recall and F1Score.mp4 |
29.41Мб |
4. Understanding the Confusion Matrix, AUC, Accuracy, Precision, Recall and F1Score.srt |
13.64Кб |
4. Variable Types in Python.mp4 |
54.74Мб |
4. Variable Types in Python.srt |
8.98Кб |
40 |
436.00Кб |
41 |
115.33Кб |
42 |
240.39Кб |
43 |
162.43Кб |
44 |
281.31Кб |
45 |
827.21Кб |
46 |
878.56Кб |
47 |
1015.12Кб |
48 |
370.08Кб |
49 |
2.78Кб |
5 |
333.76Кб |
5. [Hands On] - Apply SQL Transformation, Clean Missing Data, Edit Metadata.mp4 |
38.91Мб |
5. [Hands On] - Apply SQL Transformation, Clean Missing Data, Edit Metadata.srt |
18.71Кб |
5. [Hands On] - Outliers Treatment - Clip Values.mp4 |
17.65Мб |
5. [Hands On] - Outliers Treatment - Clip Values.srt |
7.46Кб |
5. [Hands On] - Restaurant Recommendation Experiment.mp4 |
36.18Мб |
5. [Hands On] - Restaurant Recommendation Experiment.srt |
13.13Кб |
5.1 120 - Create and register a dataset.py |
1.17Кб |
5.1 20 - Conditional Statements.py |
441б |
5.1 SQL Statement - Wine.txt |
141б |
5.2 Wine Quality Dataset.csv |
83.73Кб |
5. Azure ML Experiment Workflow.mp4 |
13.22Мб |
5. Azure ML Experiment Workflow.srt |
7.63Кб |
5. Azure Storage hands on.mp4 |
97.55Мб |
5. Azure Storage hands on.srt |
12.06Кб |
5. Conditional Statements in Python.mp4 |
33.39Мб |
5. Conditional Statements in Python.srt |
5.77Кб |
5. Create and Register a Dataset using SDK.mp4 |
96.07Мб |
5. Create and Register a Dataset using SDK.srt |
10.31Кб |
5. DP-100 Exam Coverage So far..mp4 |
11.73Мб |
5. DP-100 Exam Coverage So far..srt |
1.89Кб |
5. Gradient Descent.mp4 |
27.66Мб |
5. Gradient Descent.srt |
10.39Кб |
5. Logistic Regression - Model Selection and Impact Analysis.mp4 |
13.77Мб |
5. Logistic Regression - Model Selection and Impact Analysis.srt |
5.78Кб |
5. Note for the next Hands On..html |
200б |
5. Select Columns using Pandas.mp4 |
80.72Мб |
5. Select Columns using Pandas.srt |
7.50Кб |
5. Spearman's Rank Correlation.mp4 |
6.37Мб |
5. Spearman's Rank Correlation.srt |
4.10Кб |
5. Why Machine Learning is the Future.mp4 |
68.71Мб |
5. Why Machine Learning is the Future.srt |
10.46Кб |
50 |
426.33Кб |
51 |
266.11Кб |
52 |
402.83Кб |
53 |
1019.65Кб |
54 |
623.57Кб |
55 |
815.84Кб |
56 |
589.44Кб |
57 |
38.86Кб |
58 |
407.82Кб |
59 |
4.40Кб |
6 |
460.23Кб |
6. [Hands On] - Classify Customer Complaints using Text Analytics.mp4 |
90.99Мб |
6. [Hands On] - Classify Customer Complaints using Text Analytics.srt |
10.98Кб |
6. [Hands On] - Comparison Experiment for Correlation Coefficients.mp4 |
13.19Мб |
6. [Hands On] - Comparison Experiment for Correlation Coefficients.srt |
8.12Кб |
6. [Hands On] Logistic Regression - Build Multi-Class Wine Quality Prediction Model.mp4 |
19.66Мб |
6. [Hands On] Logistic Regression - Build Multi-Class Wine Quality Prediction Model.srt |
8.68Кб |
6. [Hands On] - Sample and Split Data - Partition or Sample, Train and Test Data.mp4 |
35.52Мб |
6. [Hands On] - Sample and Split Data - Partition or Sample, Train and Test Data.srt |
16.82Кб |
6.1 130 - Access Workspace Datastore and Dataset.py |
1.52Кб |
6.1 ml_studio_overview_v1.1.pdf |
2.25Мб |
6.1 two-class complaints modified.txt |
47.39Кб |
6.1 winequality-red.csv |
83.73Кб |
6.2 microsoft-machine-learning-algorithm-cheat-sheet-v6.pdf |
404.10Кб |
6. Access Workspace, Datastore and Datasets using SDK.mp4 |
110.73Мб |
6. Access Workspace, Datastore and Datasets using SDK.srt |
10.43Кб |
6. Azure ComputeVirtual Machines.mp4 |
21.75Мб |
6. Azure ComputeVirtual Machines.srt |
4.34Кб |
6. Azure ML Cheat Sheet for Model Selection.mp4 |
11.26Мб |
6. Azure ML Cheat Sheet for Model Selection.srt |
6.64Кб |
6. Clean Missing Data with MICE.mp4 |
13.06Мб |
6. Clean Missing Data with MICE.srt |
7.00Кб |
6. Linear Regression Online Gradient Descent.mp4 |
6.71Мб |
6. Linear Regression Online Gradient Descent.srt |
2.22Кб |
6. Python Loops explained..mp4 |
12.27Мб |
6. Python Loops explained..srt |
2.68Кб |
6. Select Columns By drop method.mp4 |
74.01Мб |
6. Select Columns By drop method.srt |
7.52Кб |
6. Understanding the Matchbox Recommendation Results.mp4 |
17.44Мб |
6. Understanding the Matchbox Recommendation Results.srt |
8.27Кб |
6. What is AzureML Datastore and Dataset.mp4 |
31.37Мб |
6. What is AzureML Datastore and Dataset.srt |
7.13Кб |
6. What is Machine Learning.mp4 |
18.49Мб |
6. What is Machine Learning.srt |
11.13Кб |
60 |
459.64Кб |
61 |
796.68Кб |
62 |
576.50Кб |
63 |
444.39Кб |
64 |
630.92Кб |
65 |
583.62Кб |
66 |
947.94Кб |
67 |
906.11Кб |
68 |
157.97Кб |
69 |
193.80Кб |
7 |
967.74Кб |
7. [Hands On] - Clean Missing Data with MICE.mp4 |
15.92Мб |
7. [Hands On] - Clean Missing Data with MICE.srt |
7.12Кб |
7. [Hands On] - Experiment Online Gradient.mp4 |
10.85Мб |
7. [Hands On] - Experiment Online Gradient.srt |
4.53Кб |
7. [Hands On] - Filter Based Selection - AzureML Experiment.mp4 |
6.37Мб |
7. [Hands On] - Filter Based Selection - AzureML Experiment.srt |
3.97Кб |
7.1 020 - add rows and columns using pandas.py |
532б |
7.1 140 - Dataset and Dataframe IO.py |
1.23Кб |
7.1 30 - Python While Loop.py |
340б |
7.1 MICE Loan Dataset.csv |
37.12Кб |
7. Add columns and rows.mp4 |
61.01Мб |
7. Add columns and rows.srt |
6.66Кб |
7. Create and Register a Datastore.mp4 |
89.86Мб |
7. Create and Register a Datastore.srt |
11.83Кб |
7. Decision Tree - What is Decision Tree.mp4 |
14.33Мб |
7. Decision Tree - What is Decision Tree.srt |
8.07Кб |
7. Dockers and Azure Container Registry.mp4 |
25.90Мб |
7. Dockers and Azure Container Registry.srt |
5.92Кб |
7. Getting Started with AzureML.html |
140б |
7. Pandas Dataframe and AzureML Dataset conversions.mp4 |
89.01Мб |
7. Pandas Dataframe and AzureML Dataset conversions.srt |
9.19Кб |
7. Recommendation System.html |
141б |
7. Understanding various aspects of data - Type, Variables, Category.mp4 |
13.61Мб |
7. Understanding various aspects of data - Type, Variables, Category.srt |
8.23Кб |
7. Update to Lecture Sequence..html |
134б |
7. While Loops in Python.mp4 |
26.40Мб |
7. While Loops in Python.srt |
5.49Кб |
70 |
257.83Кб |
71 |
312.45Кб |
72 |
240.51Кб |
73 |
304.81Кб |
74 |
97.23Кб |
75 |
353.91Кб |
76 |
732.73Кб |
77 |
788.62Кб |
78 |
842.12Кб |
79 |
496.00Кб |
8 |
955.61Кб |
8.1 030 - missing values part 1.py |
1.12Кб |
8.1 150 - File and Folder Upload.py |
1.31Кб |
8.1 40 - For loop.py |
318б |
8. Clean Missing Data.mp4 |
74.13Мб |
8. Clean Missing Data.srt |
6.56Кб |
8. Common Machine Learning Terms - Probability, Mean, Mode, Median, Range.mp4 |
13.31Мб |
8. Common Machine Learning Terms - Probability, Mean, Mode, Median, Range.srt |
8.59Кб |
8. Create a Dataset.mp4 |
83.44Мб |
8. Create a Dataset.srt |
12.07Кб |
8. Data Processing.html |
140б |
8. Decision Tree - Ensemble Learning - Bagging and Boosting.mp4 |
12.90Мб |
8. Decision Tree - Ensemble Learning - Bagging and Boosting.srt |
7.55Кб |
8. Decision Tree - What is Regression Tree.mp4 |
12.24Мб |
8. Decision Tree - What is Regression Tree.srt |
6.31Кб |
8. Fisher Based LDA - Intuition.mp4 |
24.08Мб |
8. Fisher Based LDA - Intuition.srt |
5.69Кб |
8. For Loop in Python.mp4 |
30.53Мб |
8. For Loop in Python.srt |
4.85Кб |
8. SMOTE - Create New Synthetic Observations.mp4 |
14.21Мб |
8. SMOTE - Create New Synthetic Observations.srt |
8.32Кб |
8. Upload local data to storage account via datastore.mp4 |
97.05Мб |
8. Upload local data to storage account via datastore.srt |
9.79Кб |
80 |
929.35Кб |
81 |
42.61Кб |
82 |
93.97Кб |
83 |
159.92Кб |
84 |
336.03Кб |
85 |
641.31Кб |
86 |
337.59Кб |
87 |
626.49Кб |
88 |
968.66Кб |
89 |
640.17Кб |
9 |
660.73Кб |
9. [Hands On] - Fisher Based LDA - Experiment.mp4 |
61.14Мб |
9. [Hands On] - Fisher Based LDA - Experiment.srt |
6.71Кб |
9. [Hands On] - SMOTE.mp4 |
15.54Мб |
9. [Hands On] - SMOTE.srt |
5.72Кб |
9.1 040 - Edit Metadata.py |
392б |
9.1 LoanSMOTE.csv |
6.20Кб |
9.1 Wine-Low-Medium-High.csv |
95.36Кб |
9. Decision Tree - Parameters - Two Class Boosted Decision Tree.mp4 |
12.09Мб |
9. Decision Tree - Parameters - Two Class Boosted Decision Tree.srt |
6.14Кб |
9. Decision Tree - What is Boosted Decision Tree Regression.mp4 |
4.32Мб |
9. Decision Tree - What is Boosted Decision Tree Regression.srt |
2.03Кб |
9. Edit Metadata of columns using Pandas.mp4 |
36.23Мб |
9. Edit Metadata of columns using Pandas.srt |
4.04Кб |
9. Explore the AzureML Dataset.mp4 |
26.89Мб |
9. Explore the AzureML Dataset.srt |
3.40Кб |
9. Problem Statement - Run a sample experiment and log values.mp4 |
12.91Мб |
9. Problem Statement - Run a sample experiment and log values.srt |
2.79Кб |
9. Python Lists.mp4 |
6.40Мб |
9. Python Lists.srt |
2.06Кб |
9. Types of Machine Learning Models - Classification, Regression, Clustering etc.mp4 |
19.04Мб |
9. Types of Machine Learning Models - Classification, Regression, Clustering etc.srt |
10.33Кб |
90 |
85.23Кб |
91 |
219.04Кб |
92 |
484.82Кб |
93 |
373.49Кб |
94 |
601.71Кб |
95 |
653.95Кб |
96 |
343.88Кб |
97 |
377.38Кб |
98 |
566.46Кб |
99 |
109.67Кб |
TutsNode.com.txt |
63б |