Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать
эти файлы или скачать torrent-файл.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585б |
0 |
2.28Кб |
001 Data Visualization Concepts.en.srt |
8.34Кб |
001 Data Visualization Concepts.mp4 |
94.18Мб |
001 Introduction.en.srt |
4.04Кб |
001 Introduction.mp4 |
37.39Мб |
001 Mount Your Drive.en.srt |
4.58Кб |
001 Mount Your Drive.mp4 |
17.51Мб |
001 Scrape a Simple Non-Wiki Table.en.srt |
5.20Кб |
001 Scrape a Simple Non-Wiki Table.mp4 |
33.77Мб |
001 Shall We Start With Soup_.en.srt |
3.65Кб |
001 Shall We Start With Soup_.mp4 |
34.34Мб |
001 What Are Pandas_.en.srt |
11.64Кб |
001 What Are Pandas_.mp4 |
69.66Мб |
001 What is Webscraping_.en.srt |
6.61Кб |
001 What is Webscraping_.mp4 |
40.55Мб |
002 A Ghastly Wiki Table.en.srt |
6.70Кб |
002 A Ghastly Wiki Table.mp4 |
53.39Мб |
002 Basic Data Cleaning With Pandas.en.srt |
4.66Кб |
002 Basic Data Cleaning With Pandas.mp4 |
31.78Мб |
002 Data and Code.html |
1.01Кб |
002 Explore the IPOs.en.srt |
7.91Кб |
002 Explore the IPOs.mp4 |
51.48Мб |
002 Lets Rummage Inside a Webpage.en.srt |
7.88Кб |
002 Lets Rummage Inside a Webpage.mp4 |
83.05Мб |
002 Opening a Jupyter Notebook.en.srt |
2.26Кб |
002 Opening a Jupyter Notebook.mp4 |
7.86Мб |
002 Simple Webscraping-Parse in an HTML.en.srt |
6.75Кб |
002 Simple Webscraping-Parse in an HTML.mp4 |
53.86Мб |
003 Accessing Data Within the Drive.en.srt |
3.15Кб |
003 Accessing Data Within the Drive.mp4 |
15.99Мб |
003 Another Way of Reading in HTML Webpages.en.srt |
8.94Кб |
003 Another Way of Reading in HTML Webpages.mp4 |
61.45Мб |
003 Cleaning the Scraped Data.en.srt |
4.10Кб |
003 Cleaning the Scraped Data.mp4 |
20.81Мб |
003 IPO Listings.en.srt |
6.28Кб |
003 IPO Listings.mp4 |
50.94Мб |
003 Python Installation.en.srt |
6.78Кб |
003 Python Installation.mp4 |
39.28Мб |
003 Sector Performance.en.srt |
2.62Кб |
003 Sector Performance.mp4 |
12.65Мб |
003 What is HTML_.en.srt |
10.80Кб |
003 What is HTML_.mp4 |
112.72Мб |
004 Accessing the Different HTML Components.en.srt |
2.95Кб |
004 Accessing the Different HTML Components.mp4 |
23.00Мб |
004 Making the IPO Listings Usable.en.srt |
7.05Кб |
004 Making the IPO Listings Usable.mp4 |
52.76Мб |
004 Quickly Scour The Mumbai Real Estate Trends.en.srt |
3.73Кб |
004 Quickly Scour The Mumbai Real Estate Trends.mp4 |
22.03Мб |
004 Start With Google Colaboratory Environment.en.srt |
7.84Кб |
004 Start With Google Colaboratory Environment.mp4 |
36.72Мб |
004 String Manipulation To Get a Neater Table.en.srt |
12.95Кб |
004 String Manipulation To Get a Neater Table.mp4 |
87.99Мб |
004 Tackling Tables-Part 1.en.srt |
10.19Кб |
004 Tackling Tables-Part 1.mp4 |
81.45Мб |
004 Upload Data From a Local Drive.en.srt |
5.49Кб |
004 Upload Data From a Local Drive.mp4 |
22.33Мб |
005 Another Way of Tweaking.en.srt |
2.51Кб |
005 Another Way of Tweaking.mp4 |
14.70Мб |
005 Google Colabs and GPU.en.srt |
7.06Кб |
005 Google Colabs and GPU.mp4 |
27.63Мб |
005 Install New Packages.en.srt |
2.87Кб |
005 Install New Packages.mp4 |
23.16Мб |
005 Some Housekeeping.en.srt |
5.28Кб |
005 Some Housekeeping.mp4 |
37.56Мб |
005 When We Have More Than 1 Table.en.srt |
4.93Кб |
005 When We Have More Than 1 Table.mp4 |
38.26Мб |
006 Extract Tables Into Pandas-Part1.en.srt |
4.53Кб |
006 Extract Tables Into Pandas-Part1.mp4 |
35.77Мб |
006 Google Colab Packages.en.srt |
5.07Кб |
006 Google Colab Packages.mp4 |
26.49Мб |
006 Hello to Airbnb.en.srt |
4.82Кб |
006 Hello to Airbnb.mp4 |
42.83Мб |
006 More Data Cleaning-Part1.en.srt |
8.49Кб |
006 More Data Cleaning-Part1.mp4 |
80.40Мб |
007 Exploring Amazon Bestsellers.en.srt |
6.41Кб |
007 Exploring Amazon Bestsellers.mp4 |
71.94Мб |
007 Extract Tables Into Pandas-Part2.en.srt |
7.82Кб |
007 Extract Tables Into Pandas-Part2.mp4 |
59.69Мб |
007 More Data Cleaning-Part2.en.srt |
8.42Кб |
007 More Data Cleaning-Part2.mp4 |
70.89Мб |
008 A Quicker Way to Extract Tabular Data.en.srt |
2.48Кб |
008 A Quicker Way to Extract Tabular Data.mp4 |
15.80Мб |
008 Extract Amazon Bestsellers in a Dataframe.en.srt |
6.67Кб |
008 Extract Amazon Bestsellers in a Dataframe.mp4 |
49.73Мб |
008 Geocoding the London Boroughs.en.srt |
9.17Кб |
008 Geocoding the London Boroughs.mp4 |
74.17Мб |
009 Exporting Data.en.srt |
4.16Кб |
009 Exporting Data.mp4 |
41.64Мб |
009 Get Table Names.en.srt |
3.59Кб |
009 Get Table Names.mp4 |
19.10Мб |
009 Mumbai House Prices.en.srt |
5.96Кб |
009 Mumbai House Prices.mp4 |
43.95Мб |
010 Fuzzy Strings.en.srt |
4.67Кб |
010 Fuzzy Strings.mp4 |
50.34Мб |
010 Pandas and HTML Tables.en.srt |
5.27Кб |
010 Pandas and HTML Tables.mp4 |
55.39Мб |
011 Basic Housekeeping Prior To Fuzzy Joining.en.srt |
11.29Кб |
011 Basic Housekeeping Prior To Fuzzy Joining.mp4 |
72.94Мб |
012 Let's Get Fuzzy.en.srt |
10.95Кб |
012 Let's Get Fuzzy.mp4 |
68.00Мб |
013 Merge Datasets Based on Geolocations.en.srt |
14.05Кб |
013 Merge Datasets Based on Geolocations.mp4 |
99.67Мб |
1 |
302.60Кб |
10 |
115.31Кб |
11 |
345.89Кб |
12 |
509.51Кб |
13 |
50.73Кб |
14 |
315.85Кб |
15 |
109.32Кб |
16 |
145.72Кб |
17 |
116.37Кб |
18 |
245.89Кб |
19 |
20.57Кб |
2 |
332.19Кб |
20 |
60.05Кб |
21 |
161.96Кб |
22 |
274.88Кб |
23 |
52.14Кб |
24 |
171.06Кб |
25 |
365.08Кб |
26 |
463.05Кб |
27 |
224.70Кб |
28 |
250.33Кб |
29 |
448.91Кб |
3 |
13.46Кб |
30 |
112.11Кб |
31 |
291.73Кб |
32 |
234.02Кб |
33 |
160.25Кб |
34 |
237.40Кб |
35 |
221.29Кб |
36 |
383.56Кб |
37 |
6.97Кб |
38 |
349.49Кб |
39 |
3.88Кб |
4 |
459.64Кб |
40 |
173.68Кб |
41 |
482.48Кб |
42 |
192.76Кб |
43 |
412.94Кб |
44 |
503.19Кб |
45 |
12.53Кб |
46 |
205.58Кб |
47 |
310.11Кб |
48 |
355.03Кб |
5 |
52.91Кб |
6 |
105.86Кб |
7 |
341.76Кб |
8 |
64.69Кб |
9 |
59.12Кб |
TutsNode.com.txt |
63б |