Общая информация
Название [GigaCourse.Com] Udemy - Master statistics & machine learning - intuition, math, code
Тип
Размер 12.84Гб

Файлы в торренте
Обратите внимание, что наш сайт не размещает какие-либо файлы из списка. Вы не можете скачать эти файлы или скачать torrent-файл.
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.Me].url 122б
[CourseClub.ME].url 122б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
[GigaCourse.Com].url 49б
001 [Important] Getting the most out of this course_en.srt 6.08Кб
001 [Important] Getting the most out of this course_en.vtt 5.36Кб
001 [Important] Getting the most out of this course.mp4 38.26Мб
001 About deep learning.html 619б
001 ANOVA intro, part1_en.srt 26.20Кб
001 ANOVA intro, part1_en.vtt 22.63Кб
001 ANOVA intro, part1.mp4 137.72Мб
001 Bar plots_en.srt 17.04Кб
001 Bar plots_en.vtt 15.28Кб
001 Bar plots.mp4 36.83Мб
001 Descriptive vs. inferential statistics_en.srt 6.38Кб
001 Descriptive vs. inferential statistics_en.vtt 5.58Кб
001 Descriptive vs. inferential statistics.mp4 21.48Мб
001 Download materials for the entire course__en.srt 5.42Кб
001 Download materials for the entire course__en.vtt 4.77Кб
001 Download materials for the entire course_.mp4 14.46Мб
001 Garbage in, garbage out (GIGO)_en.srt 5.69Кб
001 Garbage in, garbage out (GIGO)_en.vtt 5.00Кб
001 Garbage in, garbage out (GIGO).mp4 11.55Мб
001 Introduction to GLM _ regression_en.srt 29.73Кб
001 Introduction to GLM _ regression_en.vtt 25.51Кб
001 Introduction to GLM _ regression.mp4 61.97Мб
001 Is _data_ singular or plural________en.srt 2.33Кб
001 Is _data_ singular or plural________en.vtt 2.02Кб
001 Is _data_ singular or plural_______.mp4 10.92Мб
001 IVs, DVs, models, and other stats lingo_en.srt 24.30Кб
001 IVs, DVs, models, and other stats lingo_en.vtt 20.93Кб
001 IVs, DVs, models, and other stats lingo.mp4 91.14Мб
001 K-means clustering_en.srt 21.01Кб
001 K-means clustering_en.vtt 18.08Кб
001 K-means clustering.mp4 54.29Мб
001 Motivation and description of correlation_en.srt 27.37Кб
001 Motivation and description of correlation_en.vtt 23.58Кб
001 Motivation and description of correlation.mp4 118.43Мб
001 Note about the code for this section.html 135б
001 Purpose and interpretation of the t-test_en.srt 18.92Кб
001 Purpose and interpretation of the t-test_en.vtt 16.41Кб
001 Purpose and interpretation of the t-test.mp4 32.16Мб
001 Should you memorize statistical formulas__en.srt 4.17Кб
001 Should you memorize statistical formulas__en.vtt 3.69Кб
001 Should you memorize statistical formulas_.mp4 28.00Мб
001 The two perspectives of the world_en.srt 8.71Кб
001 The two perspectives of the world_en.vtt 7.52Кб
001 The two perspectives of the world.mp4 13.91Мб
001 What are confidence intervals and why do we need them__en.srt 13.12Кб
001 What are confidence intervals and why do we need them__en.vtt 11.33Кб
001 What are confidence intervals and why do we need them_.mp4 29.83Мб
001 What is probability__en.srt 17.94Кб
001 What is probability__en.vtt 15.49Кб
001 What is probability_.mp4 41.11Мб
001 What is statistical power and why is it important__en.srt 14.33Кб
001 What is statistical power and why is it important__en.vtt 12.50Кб
001 What is statistical power and why is it important_.mp4 39.53Мб
002 About using MATLAB or Python_en.srt 5.93Кб
002 About using MATLAB or Python_en.vtt 5.17Кб
002 About using MATLAB or Python.mp4 27.11Мб
002 Accuracy, precision, resolution_en.srt 11.39Кб
002 Accuracy, precision, resolution_en.vtt 9.81Кб
002 Accuracy, precision, resolution.mp4 25.42Мб
002 ANOVA intro, part 2_en.srt 28.45Кб
002 ANOVA intro, part 2_en.vtt 24.57Кб
002 ANOVA intro, part 2.mp4 84.25Мб
002 Arithmetic and exponents_en.srt 5.63Кб
002 Arithmetic and exponents_en.vtt 4.94Кб
002 Arithmetic and exponents.mp4 7.55Мб
002 Bonus content.html 3.64Кб
002 Code_ bar plots_en.srt 25.39Кб
002 Code_ bar plots_en.vtt 22.66Кб
002 Code_ bar plots.mp4 100.03Мб
002 Code_ k-means clustering_en.srt 34.34Кб
002 Code_ k-means clustering_en.vtt 29.39Кб
002 Code_ k-means clustering.mp4 230.34Мб
002 Computing confidence intervals via formula_en.srt 9.42Кб
002 Computing confidence intervals via formula_en.vtt 8.22Кб
002 Computing confidence intervals via formula.mp4 17.33Мб
002 Covariance and correlation_ formulas_en.srt 20.80Кб
002 Covariance and correlation_ formulas_en.vtt 17.86Кб
002 Covariance and correlation_ formulas.mp4 41.85Мб
002 d-prime_en.srt 19.21Кб
002 d-prime_en.vtt 16.45Кб
002 d-prime.mp4 34.14Мб
002 Estimating statistical power and sample size_en.srt 16.57Кб
002 Estimating statistical power and sample size_en.vtt 14.35Кб
002 Estimating statistical power and sample size.mp4 36.16Мб
002 Introduction_en.srt 6.23Кб
002 Introduction_en.vtt 5.44Кб
002 Introduction.mp4 53.02Мб
002 Least-squares solution to the GLM_en.srt 14.33Кб
002 Least-squares solution to the GLM_en.vtt 12.35Кб
002 Least-squares solution to the GLM.mp4 41.41Мб
002 One-sample t-test_en.srt 11.59Кб
002 One-sample t-test_en.vtt 10.04Кб
002 One-sample t-test.mp4 53.95Мб
002 Probability vs. proportion_en.srt 14.14Кб
002 Probability vs. proportion_en.vtt 12.13Кб
002 Probability vs. proportion.mp4 37.52Мб
002 What is an hypothesis and how do you specify one__en.srt 23.28Кб
002 What is an hypothesis and how do you specify one__en.vtt 19.71Кб
002 What is an hypothesis and how do you specify one_.mp4 49.12Мб
002 Where do data come from and what do they mean__en.srt 8.40Кб
002 Where do data come from and what do they mean__en.vtt 7.29Кб
002 Where do data come from and what do they mean_.mp4 35.54Мб
002 Z-score standardization_en.srt 14.29Кб
002 Z-score standardization_en.vtt 12.30Кб
002 Z-score standardization.mp4 36.23Мб
003 _Unsupervised learning__ K-means and normalization_en.srt 2.48Кб
003 _Unsupervised learning__ K-means and normalization_en.vtt 2.19Кб
003 _Unsupervised learning__ K-means and normalization.mp4 12.91Мб
003 Box-and-whisker plots_en.srt 7.82Кб
003 Box-and-whisker plots_en.vtt 6.79Кб
003 Box-and-whisker plots.mp4 11.12Мб
003 Code_ compute confidence intervals by formula_en.srt 25.68Кб
003 Code_ compute confidence intervals by formula_en.vtt 22.06Кб
003 Code_ compute confidence intervals by formula.mp4 94.29Мб
003 Code_ correlation coefficient_en.srt 40.44Кб
003 Code_ correlation coefficient_en.vtt 34.65Кб
003 Code_ correlation coefficient.mp4 214.14Мб
003 Code_ d-prime_en.srt 21.85Кб
003 Code_ d-prime_en.vtt 18.77Кб
003 Code_ d-prime.mp4 69.50Мб
003 Code_ One-sample t-test_en.srt 31.24Кб
003 Code_ One-sample t-test_en.vtt 26.62Кб
003 Code_ One-sample t-test.mp4 157.96Мб
003 Code_ z-score_en.srt 19.26Кб
003 Code_ z-score_en.vtt 16.61Кб
003 Code_ z-score.mp4 66.77Мб
003 Compute power and sample size using G_Power_en.srt 6.82Кб
003 Compute power and sample size using G_Power_en.vtt 5.80Кб
003 Compute power and sample size using G_Power.mp4 31.20Мб
003 Computing probabilities_en.srt 15.15Кб
003 Computing probabilities_en.vtt 13.08Кб
003 Computing probabilities.mp4 37.52Мб
003 Data distributions_en.srt 16.76Кб
003 Data distributions_en.vtt 14.52Кб
003 Data distributions.mp4 31.95Мб
003 Evaluating regression models_ R2 and F_en.srt 23.82Кб
003 Evaluating regression models_ R2 and F_en.vtt 20.49Кб
003 Evaluating regression models_ R2 and F.mp4 38.06Мб
003 MATLAB_ Import and clean the marriage data_en.srt 23.57Кб
003 MATLAB_ Import and clean the marriage data_en.vtt 20.52Кб
003 MATLAB_ Import and clean the marriage data.mp4 201.29Мб
003 Sample distributions under null and alternative hypotheses_en.srt 14.68Кб
003 Sample distributions under null and alternative hypotheses_en.vtt 12.79Кб
003 Sample distributions under null and alternative hypotheses.mp4 43.75Мб
003 Scientific notation_en.srt 8.72Кб
003 Scientific notation_en.vtt 7.48Кб
003 Scientific notation.mp4 12.87Мб
003 Statistics guessing game__en.srt 13.33Кб
003 Statistics guessing game__en.vtt 11.52Кб
003 Statistics guessing game_.mp4 48.39Мб
003 Sum of squares_en.srt 25.60Кб
003 Sum of squares_en.vtt 22.32Кб
003 Sum of squares.mp4 45.88Мб
003 Types of data_ categorical, numerical, etc_en.srt 20.93Кб
003 Types of data_ categorical, numerical, etc_en.vtt 18.09Кб
003 Types of data_ categorical, numerical, etc.mp4 59.37Мб
004 _Unsupervised learning__ K-means on a Gauss blur_en.srt 2.00Кб
004 _Unsupervised learning__ K-means on a Gauss blur_en.vtt 1.75Кб
004 _Unsupervised learning__ K-means on a Gauss blur.mp4 7.94Мб
004 _Unsupervised learning__ The role of variance_en.srt 4.11Кб
004 _Unsupervised learning__ The role of variance_en.vtt 3.58Кб
004 _Unsupervised learning__ The role of variance.mp4 28.65Мб
004 Code_ box plots_en.srt 12.75Кб
004 Code_ box plots_en.vtt 10.92Кб
004 Code_ box plots.mp4 83.65Мб
004 Code_ compute probabilities_en.srt 22.04Кб
004 Code_ compute probabilities_en.vtt 18.88Кб
004 Code_ compute probabilities.mp4 148.40Мб
004 Code_ data from different distributions_en.srt 45.95Кб
004 Code_ data from different distributions_en.vtt 39.47Кб
004 Code_ data from different distributions.mp4 303.11Мб
004 Code_ representing types of data on computers_en.srt 13.09Кб
004 Code_ representing types of data on computers_en.vtt 11.15Кб
004 Code_ representing types of data on computers.mp4 47.83Мб
004 Code_ Simulate data with specified correlation_en.srt 20.03Кб
004 Code_ Simulate data with specified correlation_en.vtt 17.33Кб
004 Code_ Simulate data with specified correlation.mp4 70.12Мб
004 Confidence intervals via bootstrapping (resampling)_en.srt 12.83Кб
004 Confidence intervals via bootstrapping (resampling)_en.vtt 11.18Кб
004 Confidence intervals via bootstrapping (resampling).mp4 54.27Мб
004 MATLAB_ Import the divorce data_en.srt 12.31Кб
004 MATLAB_ Import the divorce data_en.vtt 10.65Кб
004 MATLAB_ Import the divorce data.mp4 96.29Мб
004 Min-max scaling_en.srt 7.23Кб
004 Min-max scaling_en.vtt 6.30Кб
004 Min-max scaling.mp4 11.73Мб
004 P-values_ definition, tails, and misinterpretations_en.srt 25.43Кб
004 P-values_ definition, tails, and misinterpretations_en.vtt 22.25Кб
004 P-values_ definition, tails, and misinterpretations.mp4 106.47Мб
004 Response bias_en.srt 12.25Кб
004 Response bias_en.vtt 10.56Кб
004 Response bias.mp4 21.82Мб
004 Simple regression_en.srt 19.71Кб
004 Simple regression_en.vtt 16.98Кб
004 Simple regression.mp4 36.77Мб
004 Summation notation_en.srt 6.00Кб
004 Summation notation_en.vtt 5.20Кб
004 Summation notation.mp4 7.73Мб
004 The F-test and the ANOVA table_en.srt 10.47Кб
004 The F-test and the ANOVA table_en.vtt 9.18Кб
004 The F-test and the ANOVA table.mp4 19.90Мб
004 Using the Q&A forum_en.srt 8.13Кб
004 Using the Q&A forum_en.vtt 7.06Кб
004 Using the Q&A forum.mp4 24.36Мб
005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.srt 3.74Кб
005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.vtt 3.26Кб
005 _Unsupervised learning__ Boxplots of normal and uniform noise.mp4 8.24Мб
005 _Unsupervised learning__ histograms of distributions_en.srt 3.06Кб
005 _Unsupervised learning__ histograms of distributions_en.vtt 2.63Кб
005 _Unsupervised learning__ histograms of distributions.mp4 10.18Мб
005 (optional) Entering time-stamped notes in the Udemy video player_en.srt 3.10Кб
005 (optional) Entering time-stamped notes in the Udemy video player_en.vtt 2.68Кб
005 (optional) Entering time-stamped notes in the Udemy video player.mp4 7.06Мб
005 Absolute value_en.srt 4.18Кб
005 Absolute value_en.vtt 3.68Кб
005 Absolute value.mp4 6.92Мб
005 Clustering via dbscan_en.srt 21.67Кб
005 Clustering via dbscan_en.vtt 18.65Кб
005 Clustering via dbscan.mp4 100.30Мб
005 Code_ bootstrapping confidence intervals_en.srt 21.66Кб
005 Code_ bootstrapping confidence intervals_en.vtt 18.41Кб
005 Code_ bootstrapping confidence intervals.mp4 136.71Мб
005 Code_ min-max scaling_en.srt 12.56Кб
005 Code_ min-max scaling_en.vtt 10.75Кб
005 Code_ min-max scaling.mp4 40.43Мб
005 Code_ Response bias_en.srt 6.35Кб
005 Code_ Response bias_en.vtt 5.49Кб
005 Code_ Response bias.mp4 22.81Мб
005 Code_ simple regression_en.srt 13.43Кб
005 Code_ simple regression_en.vtt 11.54Кб
005 Code_ simple regression.mp4 52.29Мб
005 Correlation matrix_en.srt 13.60Кб
005 Correlation matrix_en.vtt 11.72Кб
005 Correlation matrix.mp4 30.96Мб
005 MATLAB_ More data visualizations_en.srt 9.26Кб
005 MATLAB_ More data visualizations_en.vtt 8.16Кб
005 MATLAB_ More data visualizations.mp4 34.32Мб
005 Probability and odds_en.srt 6.94Кб
005 Probability and odds_en.vtt 6.01Кб
005 Probability and odds.mp4 12.01Мб
005 P-z combinations that you should memorize_en.srt 9.04Кб
005 P-z combinations that you should memorize_en.vtt 7.89Кб
005 P-z combinations that you should memorize.mp4 17.32Мб
005 Sample vs. population data_en.srt 17.21Кб
005 Sample vs. population data_en.vtt 14.93Кб
005 Sample vs. population data.mp4 37.06Мб
005 The omnibus F-test and post-hoc comparisons_en.srt 18.85Кб
005 The omnibus F-test and post-hoc comparisons_en.vtt 16.24Кб
005 The omnibus F-test and post-hoc comparisons.mp4 63.36Мб
005 Two-samples t-test_en.srt 18.97Кб
005 Two-samples t-test_en.vtt 16.40Кб
005 Two-samples t-test.mp4 93.81Мб
006 _Unsupervised learning__ Compute R2 and F_en.srt 1.44Кб
006 _Unsupervised learning__ Compute R2 and F_en.vtt 1.28Кб
006 _Unsupervised learning__ Compute R2 and F.mp4 5.38Мб
006 _Unsupervised learning__ Confidence intervals for variance_en.srt 1.89Кб
006 _Unsupervised learning__ Confidence intervals for variance_en.vtt 1.68Кб
006 _Unsupervised learning__ Confidence intervals for variance.mp4 8.54Мб
006 _Unsupervised learning__ Invert the min-max scaling_en.srt 3.63Кб
006 _Unsupervised learning__ Invert the min-max scaling_en.vtt 3.17Кб
006 _Unsupervised learning__ Invert the min-max scaling.mp4 6.79Мб
006 _Unsupervised learning__ probabilities of odds-space_en.srt 3.14Кб
006 _Unsupervised learning__ probabilities of odds-space_en.vtt 2.76Кб
006 _Unsupervised learning__ probabilities of odds-space.mp4 5.92Мб
006 Code_ correlation matrix_en.srt 31.87Кб
006 Code_ correlation matrix_en.vtt 27.17Кб
006 Code_ correlation matrix.mp4 282.48Мб
006 Code_ dbscan_en.srt 49.38Кб
006 Code_ dbscan_en.vtt 42.20Кб
006 Code_ dbscan.mp4 288.12Мб
006 Code_ Two-samples t-test_en.srt 32.17Кб
006 Code_ Two-samples t-test_en.vtt 27.56Кб
006 Code_ Two-samples t-test.mp4 211.35Мб
006 Degrees of freedom_en.srt 2.60Кб
006 Degrees of freedom_en.vtt 16.00Кб
006 Degrees of freedom.mp4 32.90Мб
006 F-score_en.srt 33.08Кб
006 F-score_en.vtt 28.75Кб
006 F-score.mp4 107.25Мб
006 Histograms_en.srt 15.81Кб
006 Histograms_en.vtt 13.70Кб
006 Histograms.mp4 43.73Мб
006 MATLAB_ Inferential statistics_en.srt 15.30Кб
006 MATLAB_ Inferential statistics_en.vtt 13.35Кб
006 MATLAB_ Inferential statistics.mp4 113.52Мб
006 Natural exponent and logarithm_en.srt 8.05Кб
006 Natural exponent and logarithm_en.vtt 7.00Кб
006 Natural exponent and logarithm.mp4 12.18Мб
006 Samples, case reports, and anecdotes_en.srt 7.68Кб
006 Samples, case reports, and anecdotes_en.vtt 6.73Кб
006 Samples, case reports, and anecdotes.mp4 17.79Мб
006 The beauty and simplicity of Normal_en.srt 7.64Кб
006 The beauty and simplicity of Normal_en.vtt 6.72Кб
006 The beauty and simplicity of Normal.mp4 10.23Мб
006 The two-way ANOVA_en.srt 29.37Кб
006 The two-way ANOVA_en.vtt 25.18Кб
006 The two-way ANOVA.mp4 104.39Мб
007 _Unsupervised learning__ average correlation matrices_en.srt 4.07Кб
007 _Unsupervised learning__ average correlation matrices_en.vtt 3.57Кб
007 _Unsupervised learning__ average correlation matrices.mp4 18.49Мб
007 _Unsupervised learning__ dbscan vs. k-means_en.srt 4.43Кб
007 _Unsupervised learning__ dbscan vs. k-means_en.vtt 3.88Кб
007 _Unsupervised learning__ dbscan vs. k-means.mp4 19.94Мб
007 _Unsupervised learning__ Importance of N for t-test_en.srt 6.85Кб
007 _Unsupervised learning__ Importance of N for t-test_en.vtt 5.94Кб
007 _Unsupervised learning__ Importance of N for t-test.mp4 16.77Мб
007 Code_ histograms_en.srt 24.24Кб
007 Code_ histograms_en.vtt 20.80Кб
007 Code_ histograms.mp4 133.49Мб
007 Measures of central tendency (mean)_en.srt 18.99Кб
007 Measures of central tendency (mean)_en.vtt 16.34Кб
007 Measures of central tendency (mean).mp4 38.70Мб
007 Misconceptions about confidence intervals_en.srt 9.08Кб
007 Misconceptions about confidence intervals_en.vtt 7.91Кб
007 Misconceptions about confidence intervals.mp4 18.60Мб
007 Multiple regression_en.srt 19.12Кб
007 Multiple regression_en.vtt 16.47Кб
007 Multiple regression.mp4 45.14Мб
007 One-way ANOVA example_en.srt 20.60Кб
007 One-way ANOVA example_en.vtt 17.68Кб
007 One-way ANOVA example.mp4 44.32Мб
007 Probability mass vs. density_en.srt 18.42Кб
007 Probability mass vs. density_en.vtt 15.95Кб
007 Probability mass vs. density.mp4 134.14Мб
007 Python_ Import and clean the marriage data_en.srt 29.28Кб
007 Python_ Import and clean the marriage data_en.vtt 25.48Кб
007 Python_ Import and clean the marriage data.mp4 249.82Мб
007 Receiver operating characteristics (ROC)_en.srt 10.95Кб
007 Receiver operating characteristics (ROC)_en.vtt 9.58Кб
007 Receiver operating characteristics (ROC).mp4 64.37Мб
007 The ethics of making up data_en.srt 10.29Кб
007 The ethics of making up data_en.vtt 8.90Кб
007 The ethics of making up data.mp4 19.65Мб
007 The logistic function_en.srt 13.12Кб
007 The logistic function_en.vtt 11.28Кб
007 The logistic function.mp4 17.90Мб
007 Type 1 and Type 2 errors_en.srt 22.20Кб
007 Type 1 and Type 2 errors_en.vtt 19.01Кб
007 Type 1 and Type 2 errors.mp4 45.90Мб
007 What are outliers and why are they dangerous__en.srt 21.54Кб
007 What are outliers and why are they dangerous__en.vtt 18.52Кб
007 What are outliers and why are they dangerous_.mp4 43.00Мб
008 _Unsupervised learning__ correlation to covariance matrix_en.srt 5.81Кб
008 _Unsupervised learning__ correlation to covariance matrix_en.vtt 5.12Кб
008 _Unsupervised learning__ correlation to covariance matrix.mp4 10.13Мб
008 _Unsupervised learning__ Histogram proportion_en.srt 3.40Кб
008 _Unsupervised learning__ Histogram proportion_en.vtt 2.98Кб
008 _Unsupervised learning__ Histogram proportion.mp4 11.79Мб
008 Code_ compute probability mass functions_en.srt 16.01Кб
008 Code_ compute probability mass functions_en.vtt 14.03Кб
008 Code_ compute probability mass functions.mp4 66.17Мб
008 Code_ One-way ANOVA (independent samples)_en.srt 25.72Кб
008 Code_ One-way ANOVA (independent samples)_en.vtt 21.93Кб
008 Code_ One-way ANOVA (independent samples).mp4 172.72Мб
008 Code_ ROC curves_en.srt 11.67Кб
008 Code_ ROC curves_en.vtt 10.14Кб
008 Code_ ROC curves.mp4 54.62Мб
008 K-nearest neighbor classification_en.srt 8.99Кб
008 K-nearest neighbor classification_en.vtt 7.84Кб
008 K-nearest neighbor classification.mp4 12.47Мб
008 Measures of central tendency (median, mode)_en.srt 18.21Кб
008 Measures of central tendency (median, mode)_en.vtt 15.71Кб
008 Measures of central tendency (median, mode).mp4 34.26Мб
008 Parametric vs. non-parametric tests_en.srt 12.87Кб
008 Parametric vs. non-parametric tests_en.vtt 11.30Кб
008 Parametric vs. non-parametric tests.mp4 87.45Мб
008 Python_ Import the divorce data_en.srt 18.53Кб
008 Python_ Import the divorce data_en.vtt 16.08Кб
008 Python_ Import the divorce data.mp4 137.14Мб
008 Rank and tied-rank_en.srt 9.55Кб
008 Rank and tied-rank_en.vtt 8.22Кб
008 Rank and tied-rank.mp4 12.92Мб
008 Removing outliers_ z-score method_en.srt 14.14Кб
008 Removing outliers_ z-score method_en.vtt 12.21Кб
008 Removing outliers_ z-score method.mp4 33.51Мб
008 Standardizing regression coefficients_en.srt 18.34Кб
008 Standardizing regression coefficients_en.vtt 15.73Кб
008 Standardizing regression coefficients.mp4 75.19Мб
008 Wilcoxon signed-rank (nonparametric t-test)_en.srt 10.43Кб
008 Wilcoxon signed-rank (nonparametric t-test)_en.vtt 9.09Кб
008 Wilcoxon signed-rank (nonparametric t-test).mp4 25.98Мб
009 _Unsupervised learning__ Make this plot look nicer__en.srt 2.35Кб
009 _Unsupervised learning__ Make this plot look nicer__en.vtt 2.06Кб
009 _Unsupervised learning__ Make this plot look nicer_.mp4 11.50Мб
009 Code_ computing central tendency_en.srt 20.14Кб
009 Code_ computing central tendency_en.vtt 17.41Кб
009 Code_ computing central tendency.mp4 66.60Мб
009 Code_ KNN_en.srt 18.21Кб
009 Code_ KNN_en.vtt 15.49Кб
009 Code_ KNN.mp4 108.34Мб
009 Code_ Multiple regression_en.srt 27.91Кб
009 Code_ Multiple regression_en.vtt 23.90Кб
009 Code_ Multiple regression.mp4 170.95Мб
009 Code_ One-way repeated-measures ANOVA_en.srt 18.38Кб
009 Code_ One-way repeated-measures ANOVA_en.vtt 15.87Кб
009 Code_ One-way repeated-measures ANOVA.mp4 73.10Мб
009 Code_ Signed-rank test_en.srt 26.90Кб
009 Code_ Signed-rank test_en.vtt 23.02Кб
009 Code_ Signed-rank test.mp4 161.85Мб
009 Cumulative distribution functions_en.srt 20.37Кб
009 Cumulative distribution functions_en.vtt 17.73Кб
009 Cumulative distribution functions.mp4 45.41Мб
009 Multiple comparisons and Bonferroni correction_en.srt 12.50Кб
009 Multiple comparisons and Bonferroni correction_en.vtt 10.79Кб
009 Multiple comparisons and Bonferroni correction.mp4 29.56Мб
009 Partial correlation_en.srt 15.42Кб
009 Partial correlation_en.vtt 13.36Кб
009 Partial correlation.mp4 59.34Мб
009 Pie charts_en.srt 8.47Кб
009 Pie charts_en.vtt 7.33Кб
009 Pie charts.mp4 16.53Мб
009 Python_ Inferential statistics_en.srt 16.08Кб
009 Python_ Inferential statistics_en.vtt 14.05Кб
009 Python_ Inferential statistics.mp4 115.54Мб
009 The modified z-score method_en.srt 5.90Кб
009 The modified z-score method_en.vtt 5.12Кб
009 The modified z-score method.mp4 9.62Мб
010 _Unsupervised learning__ central tendencies with outliers_en.srt 4.31Кб
010 _Unsupervised learning__ central tendencies with outliers_en.vtt 3.78Кб
010 _Unsupervised learning__ central tendencies with outliers.mp4 16.74Мб
010 Code_ cdfs and pdfs_en.srt 14.49Кб
010 Code_ cdfs and pdfs_en.vtt 12.56Кб
010 Code_ cdfs and pdfs.mp4 95.94Мб
010 Code_ partial correlation_en.srt 29.41Кб
010 Code_ partial correlation_en.vtt 25.23Кб
010 Code_ partial correlation.mp4 108.27Мб
010 Code_ pie charts_en.srt 19.38Кб
010 Code_ pie charts_en.vtt 16.66Кб
010 Code_ pie charts.mp4 78.92Мб
010 Code_ z-score for outlier removal_en.srt 33.64Кб
010 Code_ z-score for outlier removal_en.vtt 28.78Кб
010 Code_ z-score for outlier removal.mp4 136.89Мб
010 Mann-Whitney U test (nonparametric t-test)_en.srt 8.84Кб
010 Mann-Whitney U test (nonparametric t-test)_en.vtt 7.66Кб
010 Mann-Whitney U test (nonparametric t-test).mp4 20.32Мб
010 Polynomial regression models_en.srt 12.22Кб
010 Polynomial regression models_en.vtt 10.65Кб
010 Polynomial regression models.mp4 48.15Мб
010 Principal components analysis (PCA)_en.srt 23.28Кб
010 Principal components analysis (PCA)_en.vtt 20.26Кб
010 Principal components analysis (PCA).mp4 42.56Мб
010 Statistical vs. theoretical vs. clinical significance_en.srt 9.98Кб
010 Statistical vs. theoretical vs. clinical significance_en.vtt 8.64Кб
010 Statistical vs. theoretical vs. clinical significance.mp4 19.08Мб
010 Take-home messages_en.srt 8.72Кб
010 Take-home messages_en.vtt 7.60Кб
010 Take-home messages.mp4 43.80Мб
010 Two-way ANOVA example_en.srt 16.08Кб
010 Two-way ANOVA example_en.vtt 14.00Кб
010 Two-way ANOVA example.mp4 35.95Мб
011 _Unsupervised learning__ cdf's for various distributions_en.srt 3.32Кб
011 _Unsupervised learning__ cdf's for various distributions_en.vtt 2.94Кб
011 _Unsupervised learning__ cdf's for various distributions.mp4 9.31Мб
011 _Unsupervised learning__ z vs. modified-z_en.srt 3.84Кб
011 _Unsupervised learning__ z vs. modified-z_en.vtt 3.36Кб
011 _Unsupervised learning__ z vs. modified-z.mp4 9.02Мб
011 Code_ Mann-Whitney U test_en.srt 7.75Кб
011 Code_ Mann-Whitney U test_en.vtt 6.70Кб
011 Code_ Mann-Whitney U test.mp4 52.05Мб
011 Code_ PCA_en.srt 26.52Кб
011 Code_ PCA_en.vtt 22.60Кб
011 Code_ PCA.mp4 175.10Мб
011 Code_ polynomial modeling_en.srt 22.44Кб
011 Code_ polynomial modeling_en.vtt 19.30Кб
011 Code_ polynomial modeling.mp4 129.08Мб
011 Code_ Two-way mixed ANOVA_en.srt 21.44Кб
011 Code_ Two-way mixed ANOVA_en.vtt 18.37Кб
011 Code_ Two-way mixed ANOVA.mp4 114.16Мб
011 Cross-validation_en.srt 16.44Кб
011 Cross-validation_en.vtt 14.32Кб
011 Cross-validation.mp4 28.25Мб
011 Measures of dispersion (variance, standard deviation)_en.srt 26.26Кб
011 Measures of dispersion (variance, standard deviation)_en.vtt 22.56Кб
011 Measures of dispersion (variance, standard deviation).mp4 54.12Мб
011 The problem with Pearson_en.srt 9.89Кб
011 The problem with Pearson_en.vtt 8.65Кб
011 The problem with Pearson.mp4 16.57Мб
011 When to use lines instead of bars_en.srt 8.62Кб
011 When to use lines instead of bars_en.vtt 7.47Кб
011 When to use lines instead of bars.mp4 17.98Мб
012 _Unsupervised learning__ K-means on PC data_en.srt 2.21Кб
012 _Unsupervised learning__ K-means on PC data_en.vtt 1.95Кб
012 _Unsupervised learning__ K-means on PC data.mp4 11.52Мб
012 _Unsupervised learning__ Polynomial design matrix_en.srt 1.11Кб
012 _Unsupervised learning__ Polynomial design matrix_en.vtt 1010б
012 _Unsupervised learning__ Polynomial design matrix.mp4 4.74Мб
012 Code_ Computing dispersion_en.srt 37.23Кб
012 Code_ Computing dispersion_en.vtt 32.31Кб
012 Code_ Computing dispersion.mp4 266.09Мб
012 Creating sample estimate distributions_en.srt 27.73Кб
012 Creating sample estimate distributions_en.vtt 23.83Кб
012 Creating sample estimate distributions.mp4 124.85Мб
012 Linear vs. logarithmic axis scaling_en.srt 12.48Кб
012 Linear vs. logarithmic axis scaling_en.vtt 10.79Кб
012 Linear vs. logarithmic axis scaling.mp4 25.64Мб
012 Multivariate outlier detection_en.srt 14.35Кб
012 Multivariate outlier detection_en.vtt 12.28Кб
012 Multivariate outlier detection.mp4 25.05Мб
012 Nonparametric correlation_ Spearman rank_en.srt 10.73Кб
012 Nonparametric correlation_ Spearman rank_en.vtt 9.30Кб
012 Nonparametric correlation_ Spearman rank.mp4 23.72Мб
012 Permutation testing for t-test significance_en.srt 16.36Кб
012 Permutation testing for t-test significance_en.vtt 14.20Кб
012 Permutation testing for t-test significance.mp4 63.48Мб
012 Statistical significance vs. classification accuracy_en.srt 17.02Кб
012 Statistical significance vs. classification accuracy_en.vtt 14.68Кб
012 Statistical significance vs. classification accuracy.mp4 42.50Мб
013 Code_ Euclidean distance for outlier removal_en.srt 12.77Кб
013 Code_ Euclidean distance for outlier removal_en.vtt 11.04Кб
013 Code_ Euclidean distance for outlier removal.mp4 43.72Мб
013 Code_ line plots_en.srt 10.87Кб
013 Code_ line plots_en.vtt 9.41Кб
013 Code_ line plots.mp4 37.29Мб
013 Code_ permutation testing_en.srt 37.10Кб
013 Code_ permutation testing_en.vtt 31.77Кб
013 Code_ permutation testing.mp4 240.90Мб
013 Fisher-Z transformation for correlations_en.srt 9.87Кб
013 Fisher-Z transformation for correlations_en.vtt 8.63Кб
013 Fisher-Z transformation for correlations.mp4 28.48Мб
013 Independent components analysis (ICA)_en.srt 17.25Кб
013 Independent components analysis (ICA)_en.vtt 15.07Кб
013 Independent components analysis (ICA).mp4 45.52Мб
013 Interquartile range (IQR)_en.srt 7.01Кб
013 Interquartile range (IQR)_en.vtt 6.10Кб
013 Interquartile range (IQR).mp4 9.84Мб
013 Logistic regression_en.srt 25.46Кб
013 Logistic regression_en.vtt 21.81Кб
013 Logistic regression.mp4 52.70Мб
013 Monte Carlo sampling_en.srt 3.82Кб
013 Monte Carlo sampling_en.vtt 3.35Кб
013 Monte Carlo sampling.mp4 8.83Мб
014 _Unsupervised learning__ How many permutations__en.srt 7.74Кб
014 _Unsupervised learning__ How many permutations__en.vtt 6.73Кб
014 _Unsupervised learning__ How many permutations_.mp4 32.50Мб
014 _Unsupervised learning__ log-scaled plots_en.srt 2.47Кб
014 _Unsupervised learning__ log-scaled plots_en.vtt 2.14Кб
014 _Unsupervised learning__ log-scaled plots.mp4 3.73Мб
014 Code_ ICA_en.srt 18.44Кб
014 Code_ ICA_en.vtt 15.90Кб
014 Code_ ICA.mp4 73.36Мб
014 Code_ IQR_en.srt 23.44Кб
014 Code_ IQR_en.vtt 20.15Кб
014 Code_ IQR.mp4 83.39Мб
014 Code_ Logistic regression_en.srt 14.18Кб
014 Code_ Logistic regression_en.vtt 12.14Кб
014 Code_ Logistic regression.mp4 81.23Мб
014 Code_ Spearman correlation and Fisher-Z_en.srt 11.10Кб
014 Code_ Spearman correlation and Fisher-Z_en.vtt 9.61Кб
014 Code_ Spearman correlation and Fisher-Z.mp4 42.71Мб
014 Removing outliers by data trimming_en.srt 8.53Кб
014 Removing outliers by data trimming_en.vtt 7.40Кб
014 Removing outliers by data trimming.mp4 16.90Мб
014 Sampling variability, noise, and other annoyances_en.srt 13.06Кб
014 Sampling variability, noise, and other annoyances_en.vtt 11.37Кб
014 Sampling variability, noise, and other annoyances.mp4 106.08Мб
015 _Unsupervised learning__ Spearman correlation_en.srt 1.86Кб
015 _Unsupervised learning__ Spearman correlation_en.vtt 1.64Кб
015 _Unsupervised learning__ Spearman correlation.mp4 15.95Мб
015 Code_ Data trimming to remove outliers_en.srt 16.30Кб
015 Code_ Data trimming to remove outliers_en.vtt 14.05Кб
015 Code_ Data trimming to remove outliers.mp4 65.29Мб
015 Code_ sampling variability_en.srt 38.25Кб
015 Code_ sampling variability_en.vtt 32.90Кб
015 Code_ sampling variability.mp4 154.75Мб
015 QQ plots_en.srt 10.18Кб
015 QQ plots_en.vtt 8.88Кб
015 QQ plots.mp4 16.22Мб
015 Under- and over-fitting_en.srt 25.37Кб
015 Under- and over-fitting_en.vtt 21.71Кб
015 Under- and over-fitting.mp4 120.86Мб
016 _Unsupervised learning__ confidence interval on correlation_en.srt 3.32Кб
016 _Unsupervised learning__ confidence interval on correlation_en.vtt 2.93Кб
016 _Unsupervised learning__ confidence interval on correlation.mp4 10.31Мб
016 _Unsupervised learning__ Overfit data_en.srt 2.69Кб
016 _Unsupervised learning__ Overfit data_en.vtt 2.36Кб
016 _Unsupervised learning__ Overfit data.mp4 4.82Мб
016 Code_ QQ plots_en.srt 23.48Кб
016 Code_ QQ plots_en.vtt 20.10Кб
016 Code_ QQ plots.mp4 90.30Мб
016 Expected value_en.srt 15.37Кб
016 Expected value_en.vtt 13.21Кб
016 Expected value.mp4 59.63Мб
016 Non-parametric solutions to outliers_en.srt 6.34Кб
016 Non-parametric solutions to outliers_en.vtt 5.57Кб
016 Non-parametric solutions to outliers.mp4 22.96Мб
017 Comparing _nested_ models_en.srt 17.28Кб
017 Comparing _nested_ models_en.vtt 15.11Кб
017 Comparing _nested_ models.mp4 39.07Мб
017 Conditional probability_en.srt 18.81Кб
017 Conditional probability_en.vtt 16.12Кб
017 Conditional probability.mp4 85.68Мб
017 Kendall's correlation for ordinal data_en.srt 15.22Кб
017 Kendall's correlation for ordinal data_en.vtt 13.13Кб
017 Kendall's correlation for ordinal data.mp4 30.15Мб
017 Nonlinear data transformations_en.srt 19.80Кб
017 Nonlinear data transformations_en.vtt 17.38Кб
017 Nonlinear data transformations.mp4 33.69Мб
017 Statistical _moments__en.srt 13.06Кб
017 Statistical _moments__en.vtt 11.16Кб
017 Statistical _moments_.mp4 21.68Мб
018 An outlier lecture on personal accountability_en.srt 4.12Кб
018 An outlier lecture on personal accountability_en.vtt 3.65Кб
018 An outlier lecture on personal accountability.mp4 17.70Мб
018 Code_ conditional probabilities_en.srt 29.61Кб
018 Code_ conditional probabilities_en.vtt 25.37Кб
018 Code_ conditional probabilities.mp4 115.08Мб
018 Code_ Kendall correlation_en.srt 17.59Кб
018 Code_ Kendall correlation_en.vtt 22.96Кб
018 Code_ Kendall correlation.mp4 184.22Мб
018 Histograms part 2_ Number of bins_en.srt 14.32Кб
018 Histograms part 2_ Number of bins_en.vtt 12.41Кб
018 Histograms part 2_ Number of bins.mp4 23.50Мб
018 What to do about missing data_en.srt 9.59Кб
018 What to do about missing data_en.vtt 8.36Кб
018 What to do about missing data.mp4 16.05Мб
019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.srt 3.31Кб
019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.vtt 2.95Кб
019 _Unsupervised learning__ Does Kendall vs. Pearson matter_.mp4 14.95Мб
019 Code_ Histogram bins_en.srt 17.86Кб
019 Code_ Histogram bins_en.vtt 15.40Кб
019 Code_ Histogram bins.mp4 118.12Мб
019 Tree diagrams for conditional probabilities_en.srt 9.92Кб
019 Tree diagrams for conditional probabilities_en.vtt 8.57Кб
019 Tree diagrams for conditional probabilities.mp4 13.50Мб
020 The Law of Large Numbers_en.srt 14.41Кб
020 The Law of Large Numbers_en.vtt 12.47Кб
020 The Law of Large Numbers.mp4 40.55Мб
020 The subgroups correlation paradox_en.srt 6.98Кб
020 The subgroups correlation paradox_en.vtt 6.13Кб
020 The subgroups correlation paradox.mp4 21.57Мб
020 Violin plots_en.srt 4.98Кб
020 Violin plots_en.vtt 4.30Кб
020 Violin plots.mp4 6.47Мб
021 Code_ Law of Large Numbers in action_en.srt 27.83Кб
021 Code_ Law of Large Numbers in action_en.vtt 23.84Кб
021 Code_ Law of Large Numbers in action.mp4 165.60Мб
021 Code_ violin plots_en.srt 15.42Кб
021 Code_ violin plots_en.vtt 13.19Кб
021 Code_ violin plots.mp4 104.96Мб
021 Cosine similarity_en.srt 7.49Кб
021 Cosine similarity_en.vtt 6.54Кб
021 Cosine similarity.mp4 14.20Мб
022 _Unsupervised learning__ asymmetric violin plots_en.srt 3.84Кб
022 _Unsupervised learning__ asymmetric violin plots_en.vtt 3.31Кб
022 _Unsupervised learning__ asymmetric violin plots.mp4 17.32Мб
022 Code_ Cosine similarity vs. Pearson correlation_en.srt 31.27Кб
022 Code_ Cosine similarity vs. Pearson correlation_en.vtt 26.93Кб
022 Code_ Cosine similarity vs. Pearson correlation.mp4 102.19Мб
022 The Central Limit Theorem_en.srt 15.56Кб
022 The Central Limit Theorem_en.vtt 13.52Кб
022 The Central Limit Theorem.mp4 26.67Мб
023 Code_ the CLT in action_en.srt 23.58Кб
023 Code_ the CLT in action_en.vtt 20.30Кб
023 Code_ the CLT in action.mp4 93.32Мб
023 Shannon entropy_en.srt 15.53Кб
023 Shannon entropy_en.vtt 13.46Кб
023 Shannon entropy.mp4 33.05Мб
024 _Unsupervised learning__ Averaging pairs of numbers_en.srt 3.19Кб
024 _Unsupervised learning__ Averaging pairs of numbers_en.vtt 2.76Кб
024 _Unsupervised learning__ Averaging pairs of numbers.mp4 9.48Мб
024 Code_ entropy_en.srt 30.29Кб
024 Code_ entropy_en.vtt 25.84Кб
024 Code_ entropy.mp4 96.76Мб
025 _Unsupervised learning__ entropy and number of bins_en.srt 2.01Кб
025 _Unsupervised learning__ entropy and number of bins_en.vtt 1.76Кб
025 _Unsupervised learning__ entropy and number of bins.mp4 8.25Мб
25299297-stats-intro-GuessTheTest.zip 3.72Кб
32684220-statsML.zip 1.36Мб
35855730-state-marriage-rates-90-95-99-19.xlsx 23.64Кб
35855734-state-divorce-rates-90-95-99-19.xlsx 22.47Кб
Статистика распространения по странам
Эстония (EE) 1
Индия (IN) 1
Всего 2
Список IP Полный список IP-адресов, которые скачивают или раздают этот торрент