Torrent Info
Title GetFreeCourses.Co-Udemy-Complete 2022 Data Science & Machine Learning Bootcamp
Category
Size 17.17GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
01.1 Course Resources.html 122B
01.1 Course Resources.html 122B
01.1 Course Resources.html 122B
01.1 Course Resources.html 122B
01.1 Course Resources.html 122B
01.1 Course Resources.html 122B
01.1 Course Resources.html 122B
01.1 Course Resources.html 122B
01.1 Course Resources.html 122B
01.1 SpamData.zip 22.83MB
01.2 Course Resources.html 122B
01.2 SpamData.zip 22.32MB
01. Defining the Problem.mp4 39.91MB
01. Defining the Problem.srt 6.46KB
01. How to Translate a Business Problem into a Machine Learning Problem.mp4 42.26MB
01. How to Translate a Business Problem into a Machine Learning Problem.srt 9.69KB
01. Introduction to Linear Regression & Specifying the Problem.mp4 30.32MB
01. Introduction to Linear Regression & Specifying the Problem.srt 8.74KB
01. Setting up the Notebook and Understanding Delimiters in a Dataset.mp4 72.50MB
01. Setting up the Notebook and Understanding Delimiters in a Dataset.srt 11.17KB
01. Set up the Testing Notebook.mp4 26.45MB
01. Set up the Testing Notebook.srt 3.82KB
01. Solving a Business Problem with Image Classification.mp4 30.53MB
01. Solving a Business Problem with Image Classification.srt 4.97KB
01. The Human Brain and the Inspiration for Artificial Neural Networks.mp4 51.81MB
01. The Human Brain and the Inspiration for Artificial Neural Networks.srt 10.88KB
01. What's coming up.mp4 7.10MB
01. What's Coming Up.mp4 20.92MB
01. What's coming up.srt 2.49KB
01. What's Coming Up.srt 3.83KB
01. What is Machine Learning.mp4 45.29MB
01. What is Machine Learning.srt 6.91KB
01. What you'll make.mp4 38.44MB
01. What you'll make.srt 9.76KB
01. Where next.html 3.93KB
01. Windows Users - Install Anaconda.mp4 49.60MB
01. Windows Users - Install Anaconda.srt 8.78KB
02.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip 6.39KB
02.1 Course Resources.html 122B
02.1 MNIST.zip 14.77MB
02.1 SpamData.zip 21.29MB
02.1 The-Numbers Movie Budgets.html 102B
02.2 cost_revenue_dirty.csv 374.68KB
02. Create a Full Matrix.mp4 132.24MB
02. Create a Full Matrix.srt 21.72KB
02. Gather & Clean the Data.mp4 97.02MB
02. Gather & Clean the Data.srt 13.93KB
02. Gathering Email Data and Working with Archives & Text Editors.mp4 112.05MB
02. Gathering Email Data and Working with Archives & Text Editors.srt 14.13KB
02. Gathering the Boston House Price Data.mp4 56.24MB
02. Gathering the Boston House Price Data.srt 8.66KB
02. Getting the Data and Loading it into Numpy Arrays.mp4 52.82MB
02. Getting the Data and Loading it into Numpy Arrays.srt 9.01KB
02. How a Machine Learns.mp4 22.78MB
02. How a Machine Learns.srt 7.22KB
02. Installing Tensorflow and Keras for Jupyter.mp4 42.10MB
02. Installing Tensorflow and Keras for Jupyter.srt 6.42KB
02. Joint Conditional Probability (Part 1) Dot Product.mp4 66.40MB
02. Joint Conditional Probability (Part 1) Dot Product.srt 12.72KB
02. Layers, Feature Generation and Learning.mp4 146.70MB
02. Layers, Feature Generation and Learning.srt 27.79KB
02. Mac Users - Install Anaconda.mp4 52.41MB
02. Mac Users - Install Anaconda.srt 8.05KB
02. Saving Tensorflow Models.mp4 109.98MB
02. Saving Tensorflow Models.srt 21.26KB
02. What is Data Science.mp4 42.86MB
02. What is Data Science.srt 5.72KB
02. What Modules Do You Want to See.html 431B
03.1 ML Data Science Syllabus.pdf 103.97KB
03.1 MNIST_Model_Load_Files.zip 2.84MB
03.1 Try Jupyter in your Browser.html 85B
03.2 12 TF SavedModel Export Completed.ipynb.zip 6.13KB
03.2 cost_revenue_clean.csv 90.82KB
03. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4 87.14MB
03. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.srt 15.59KB
03. Costs and Disadvantages of Neural Networks.mp4 91.98MB
03. Costs and Disadvantages of Neural Networks.srt 19.24KB
03. Count the Tokens to Train the Naive Bayes Model.mp4 96.18MB
03. Count the Tokens to Train the Naive Bayes Model.srt 18.35KB
03. Data Exploration and Understanding the Structure of the Input Data.mp4 32.41MB
03. Data Exploration and Understanding the Structure of the Input Data.srt 6.49KB
03. Does LSD Make You Better at Maths.mp4 42.25MB
03. Does LSD Make You Better at Maths.srt 7.35KB
03. Download the Syllabus.html 1.03KB
03. Explore & Visualise the Data with Python.mp4 148.15MB
03. Explore & Visualise the Data with Python.srt 31.02KB
03. Gathering the CIFAR 10 Dataset.mp4 31.37MB
03. Gathering the CIFAR 10 Dataset.srt 6.10KB
03. How to Add the Lesson Resources to the Project.mp4 28.90MB
03. How to Add the Lesson Resources to the Project.srt 4.96KB
03. Introduction to Cost Functions.mp4 66.21MB
03. Introduction to Cost Functions.srt 9.49KB
03. Joint Conditional Probablity (Part 2) Priors.mp4 63.98MB
03. Joint Conditional Probablity (Part 2) Priors.srt 10.54KB
03. Loading a SavedModel.mp4 103.93MB
03. Loading a SavedModel.srt 26.16KB
03. Stay in Touch!.html 1.05KB
04.1 01 Linear Regression (checkpoint).ipynb.zip 37.64KB
04.1 12 Rules to Learn to Code.pdf 2.25MB
04.1 App Brewery Cornell Notes Template.html 141B
04.1 TF_Keras_Classification_Images.zip 501.10KB
04.1 TFJS.zip 1.54MB
04. Clean and Explore the Data (Part 2) Find Missing Values.mp4 135.02MB
04. Clean and Explore the Data (Part 2) Find Missing Values.srt 18.59KB
04. Converting a Model to Tensorflow.js.mp4 132.49MB
04. Converting a Model to Tensorflow.js.srt 21.13KB
04. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4 70.19MB
04. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.srt 12.67KB
04. Download the 12 Rules to Learn to Code.html 1.13KB
04. Exploring the CIFAR Data.mp4 110.31MB
04. Exploring the CIFAR Data.srt 18.23KB
04. LaTeX Markdown and Generating Data with Numpy.mp4 90.52MB
04. LaTeX Markdown and Generating Data with Numpy.srt 17.28KB
04. Making Predictions Comparing Joint Probabilities.mp4 52.34MB
04. Making Predictions Comparing Joint Probabilities.srt 9.67KB
04. Preprocessing Image Data and How RGB Works.mp4 93.60MB
04. Preprocessing Image Data and How RGB Works.srt 16.15KB
04. Sum the Tokens across the Spam and Ham Subsets.mp4 46.71MB
04. Sum the Tokens across the Spam and Ham Subsets.srt 7.76KB
04. The Intuition behind the Linear Regression Model.mp4 29.63MB
04. The Intuition behind the Linear Regression Model.srt 10.84KB
04. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4 33.39MB
04. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.srt 6.08KB
04. Top Tips for Succeeding on this Course.html 2.09KB
05. [Python] - Variables and Types.mp4 71.36MB
05. [Python] - Variables and Types.srt 16.55KB
05.1 math_garden_stub.zip 44.03KB
05. Analyse and Evaluate the Results.mp4 105.16MB
05. Analyse and Evaluate the Results.srt 22.41KB
05. Basic Probability.mp4 28.55MB
05. Basic Probability.srt 5.26KB
05. Calculate the Token Probabilities and Save the Trained Model.mp4 53.45MB
05. Calculate the Token Probabilities and Save the Trained Model.srt 9.44KB
05. Course Resources List.html 1.13KB
05. Importing Keras Models and the Tensorflow Graph.mp4 65.47MB
05. Importing Keras Models and the Tensorflow Graph.srt 11.44KB
05. Introducing the Website Project and Tooling.mp4 78.04MB
05. Introducing the Website Project and Tooling.srt 17.19KB
05. Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4 93.16MB
05. Pre-processing Scaling Inputs and Creating a Validation Dataset.srt 19.92KB
05. The Accuracy Metric.mp4 40.54MB
05. The Accuracy Metric.srt 7.65KB
05. Understanding the Power Rule & Creating Charts with Subplots.mp4 90.17MB
05. Understanding the Power Rule & Creating Charts with Subplots.srt 18.10KB
05. Visualising Data (Part 1) Historams, Distributions & Outliers.mp4 64.55MB
05. Visualising Data (Part 1) Historams, Distributions & Outliers.srt 14.24KB
05. What is a Tensor.mp4 45.39MB
05. What is a Tensor.srt 8.99KB
06. [Python] - Loops and the Gradient Descent Algorithm.mp4 287.46MB
06. [Python] - Loops and the Gradient Descent Algorithm.srt 44.03KB
06.1 01 Linear Regression (complete).ipynb.zip 75.28KB
06. Coding Challenge Prepare the Test Data.mp4 35.60MB
06. Coding Challenge Prepare the Test Data.srt 5.14KB
06. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4 103.60MB
06. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.srt 18.63KB
06. Creating Tensors and Setting up the Neural Network Architecture.mp4 150.86MB
06. Creating Tensors and Setting up the Neural Network Architecture.srt 29.05KB
06. Download the Complete Notebook Here.html 242B
06. HTML and CSS Styling.mp4 150.23MB
06. HTML and CSS Styling.srt 37.89KB
06. Joint & Conditional Probability.mp4 141.82MB
06. Joint & Conditional Probability.srt 19.86KB
06. Making Predictions using InceptionResNet.mp4 134.58MB
06. Making Predictions using InceptionResNet.srt 18.90KB
06. Python Variable Coding Exercise.html 156B
06. Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4 57.32MB
06. Visualising Data (Part 2) Seaborn and Probability Density Functions.srt 8.98KB
06. Visualising the Decision Boundary.mp4 205.31MB
06. Visualising the Decision Boundary.srt 33.44KB
07. [Python] - Lists and Arrays.mp4 53.47MB
07. [Python] - Lists and Arrays.srt 12.15KB
07.1 07 Bayes Classifier - Training.ipynb.zip 5.82KB
07.1 x_test2_ylabel1.txt 4.59KB
07.2 x_test0_ylabel7.txt 4.59KB
07.3 x_test1_ylabel2.txt 4.59KB
07. Bayes Theorem.mp4 83.60MB
07. Bayes Theorem.srt 15.16KB
07. Coding Challenge Solution Using other Keras Models.mp4 103.53MB
07. Coding Challenge Solution Using other Keras Models.srt 12.94KB
07. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4 75.11MB
07. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.srt 14.15KB
07. Download the Complete Notebook Here.html 242B
07. False Positive vs False Negatives.mp4 63.25MB
07. False Positive vs False Negatives.srt 12.81KB
07. Interacting with the Operating System and the Python Try-Catch Block.mp4 133.41MB
07. Interacting with the Operating System and the Python Try-Catch Block.srt 23.69KB
07. Join the Student Community.html 730B
07. Loading a Tensorflow.js Model and Starting your own Server.mp4 188.04MB
07. Loading a Tensorflow.js Model and Starting your own Server.srt 37.18KB
07. Python Loops Coding Exercise.html 156B
07. Working with Index Data, Pandas Series, and Dummy Variables.mp4 140.76MB
07. Working with Index Data, Pandas Series, and Dummy Variables.srt 20.72KB
08. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4 291.33MB
08. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).srt 42.99KB
08.1 09 Neural Nets Pretrained Image Classification.ipynb.zip 571.83KB
08. Adding a Favicon.mp4 41.51MB
08. Adding a Favicon.srt 7.39KB
08. Any Feedback on this Section.html 512B
08. Any Feedback on this Section.html 527B
08. Download the Complete Notebook Here.html 264B
08. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4 100.42MB
08. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.srt 14.10KB
08. Python Lists Coding Exercise.html 156B
08. Reading Files (Part 1) Absolute Paths and Relative Paths.mp4 60.90MB
08. Reading Files (Part 1) Absolute Paths and Relative Paths.srt 11.71KB
08. TensorFlow Sessions and Batching Data.mp4 100.32MB
08. TensorFlow Sessions and Batching Data.srt 20.50KB
08. The Recall Metric.mp4 28.15MB
08. The Recall Metric.srt 6.54KB
08. Understanding Descriptive Statistics the Mean vs the Median.mp4 62.18MB
08. Understanding Descriptive Statistics the Mean vs the Median.srt 12.14KB
09. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4 219.01MB
09. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).srt 33.54KB
09. [Python & Pandas] - Dataframes and Series.mp4 153.20MB
09. [Python & Pandas] - Dataframes and Series.srt 28.09KB
09.1 lsd_math_score_data.csv 155B
09. Any Feedback on this Section.html 526B
09. Introduction to Correlation Understanding Strength & Direction.mp4 33.09MB
09. Introduction to Correlation Understanding Strength & Direction.srt 8.40KB
09. Reading Files (Part 2) Stream Objects and Email Structure.mp4 104.32MB
09. Reading Files (Part 2) Stream Objects and Email Structure.srt 14.57KB
09. Styling an HTML Canvas.mp4 187.37MB
09. Styling an HTML Canvas.srt 39.42KB
09. Tensorboard Summaries and the Filewriter.mp4 128.29MB
09. Tensorboard Summaries and the Filewriter.srt 23.21KB
09. The Precision Metric.mp4 53.33MB
09. The Precision Metric.srt 9.50KB
09. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4 191.54MB
09. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.srt 28.28KB
10. [Python] - Module Imports.mp4 232.07MB
10. [Python] - Module Imports.srt 36.12KB
10. Calculating Correlations and the Problem posed by Multicollinearity.mp4 111.43MB
10. Calculating Correlations and the Problem posed by Multicollinearity.srt 17.83KB
10. Drawing on an HTML Canvas.mp4 171.97MB
10. Drawing on an HTML Canvas.srt 37.83KB
10. Extracting the Text in the Email Body.mp4 47.43MB
10. Extracting the Text in the Email Body.srt 6.00KB
10. The F-score or F1 Metric.mp4 24.71MB
10. The F-score or F1 Metric.srt 4.48KB
10. Understanding the Learning Rate.mp4 236.60MB
10. Understanding the Learning Rate.srt 37.72KB
10. Understanding the Tensorflow Graph Nodes and Edges.mp4 115.75MB
10. Understanding the Tensorflow Graph Nodes and Edges.srt 21.25KB
10. Use the Model to Make Predictions.mp4 218.25MB
10. Use the Model to Make Predictions.srt 32.97KB
11. [Python] - Functions - Part 1 Defining and Calling Functions.mp4 41.61MB
11. [Python] - Functions - Part 1 Defining and Calling Functions.srt 10.49KB
11. [Python] - Generator Functions & the yield Keyword.mp4 133.16MB
11. [Python] - Generator Functions & the yield Keyword.srt 22.32KB
11. A Naive Bayes Implementation using SciKit Learn.mp4 195.10MB
11. A Naive Bayes Implementation using SciKit Learn.srt 33.68KB
11. Data Pre-Processing for Tensorflow.js.mp4 61.89MB
11. Data Pre-Processing for Tensorflow.js.srt 11.92KB
11. How to Create 3-Dimensional Charts.mp4 193.48MB
11. How to Create 3-Dimensional Charts.srt 26.10KB
11. Model Evaluation and the Confusion Matrix.mp4 62.76MB
11. Model Evaluation and the Confusion Matrix.srt 10.80KB
11. Name Scoping and Image Visualisation in Tensorboard.mp4 155.37MB
11. Name Scoping and Image Visualisation in Tensorboard.srt 26.26KB
11. Visualising Correlations with a Heatmap.mp4 168.65MB
11. Visualising Correlations with a Heatmap.srt 24.37KB
12.1 08 Naive Bayes with scikit-learn.ipynb.zip 13.26KB
12.1 math_garden_stub 12.12 checkpoint.zip 4.09MB
12.2 07 Bayes Classifier - Testing, Inference & Evaluation.ipynb.zip 243.05KB
12. Create a Pandas DataFrame of Email Bodies.mp4 48.66MB
12. Create a Pandas DataFrame of Email Bodies.srt 7.23KB
12. Different Model Architectures Experimenting with Dropout.mp4 213.67MB
12. Different Model Architectures Experimenting with Dropout.srt 30.11KB
12. Download the Complete Notebook Here.html 242B
12. Introduction to OpenCV.mp4 235.33MB
12. Introduction to OpenCV.srt 38.37KB
12. Model Evaluation and the Confusion Matrix.mp4 251.83MB
12. Model Evaluation and the Confusion Matrix.srt 40.50KB
12. Python Functions Coding Exercise - Part 1.html 156B
12. Techniques to Style Scatter Plots.mp4 128.53MB
12. Techniques to Style Scatter Plots.srt 20.56KB
12. Understanding Partial Derivatives and How to use SymPy.mp4 132.81MB
12. Understanding Partial Derivatives and How to use SymPy.srt 20.23KB
13. [Python] - Functions - Part 2 Arguments & Parameters.mp4 128.20MB
13. [Python] - Functions - Part 2 Arguments & Parameters.srt 20.76KB
13.1 10 Neural Nets - Keras CIFAR10 Classification.ipynb.zip 120.11KB
13. A Note for the Next Lesson.html 476B
13. Any Feedback on this Section.html 509B
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4 121.94MB
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.srt 17.96KB
13. Download the Complete Notebook Here.html 242B
13. Implementing Batch Gradient Descent with SymPy.mp4 86.82MB
13. Implementing Batch Gradient Descent with SymPy.srt 12.93KB
13. Prediction and Model Evaluation.mp4 110.72MB
13. Prediction and Model Evaluation.srt 18.90KB
13. Resizing and Adding Padding to Images.mp4 157.50MB
13. Resizing and Adding Padding to Images.srt 26.86KB
14. [Python] - Loops and Performance Considerations.mp4 131.07MB
14. [Python] - Loops and Performance Considerations.srt 18.07KB
14.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip 6.60KB
14. Any Feedback on this Section.html 521B
14. Calculating the Centre of Mass and Shifting the Image.mp4 223.26MB
14. Calculating the Centre of Mass and Shifting the Image.srt 35.49KB
14. Cleaning Data (Part 2) Working with a DataFrame Index.mp4 61.83MB
14. Cleaning Data (Part 2) Working with a DataFrame Index.srt 9.23KB
14. Download the Complete Notebook Here.html 242B
14. Python Functions Coding Exercise - Part 2.html 156B
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4 214.40MB
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.srt 28.70KB
15. [Python] - Functions - Part 3 Results & Return Values.mp4 82.63MB
15. [Python] - Functions - Part 3 Results & Return Values.srt 16.55KB
15. Any Feedback on this Section.html 499B
15. Making a Prediction from a Digit drawn on the HTML Canvas.mp4 104.41MB
15. Making a Prediction from a Digit drawn on the HTML Canvas.srt 17.04KB
15. Reshaping and Slicing N-Dimensional Arrays.mp4 140.81MB
15. Reshaping and Slicing N-Dimensional Arrays.srt 22.96KB
15. Saving a JSON File with Pandas.mp4 56.35MB
15. Saving a JSON File with Pandas.srt 6.92KB
15. Understanding Multivariable Regression.mp4 48.80MB
15. Understanding Multivariable Regression.srt 7.52KB
16.1 math_garden_stub complete.zip 4.09MB
16. Adding the Game Logic.mp4 172.83MB
16. Adding the Game Logic.srt 38.09KB
16. Concatenating Numpy Arrays.mp4 71.33MB
16. Concatenating Numpy Arrays.srt 8.91KB
16. Data Visualisation (Part 1) Pie Charts.mp4 90.68MB
16. Data Visualisation (Part 1) Pie Charts.srt 16.19KB
16. How to Shuffle and Split Training & Testing Data.mp4 64.34MB
16. How to Shuffle and Split Training & Testing Data.srt 11.55KB
16. Python Functions Coding Exercise - Part 3.html 156B
17. [Python] - Objects - Understanding Attributes and Methods.mp4 156.77MB
17. [Python] - Objects - Understanding Attributes and Methods.srt 29.86KB
17. Data Visualisation (Part 2) Donut Charts.mp4 61.78MB
17. Data Visualisation (Part 2) Donut Charts.srt 9.56KB
17. Introduction to the Mean Squared Error (MSE).mp4 64.56MB
17. Introduction to the Mean Squared Error (MSE).srt 12.61KB
17. Publish and Share your Website!.mp4 38.75MB
17. Publish and Share your Website!.srt 9.51KB
17. Running a Multivariable Regression.mp4 55.56MB
17. Running a Multivariable Regression.srt 9.77KB
18. Any Feedback on this Section.html 500B
18. How to Calculate the Model Fit with R-Squared.mp4 32.40MB
18. How to Calculate the Model Fit with R-Squared.srt 4.42KB
18. How to Make Sense of Python Documentation for Data Visualisation.mp4 171.46MB
18. How to Make Sense of Python Documentation for Data Visualisation.srt 26.51KB
18. Introduction to Natural Language Processing (NLP).mp4 50.81MB
18. Introduction to Natural Language Processing (NLP).srt 8.19KB
18. Transposing and Reshaping Arrays.mp4 86.90MB
18. Transposing and Reshaping Arrays.srt 13.52KB
19. Implementing a MSE Cost Function.mp4 81.11MB
19. Implementing a MSE Cost Function.srt 13.56KB
19. Introduction to Model Evaluation.mp4 15.99MB
19. Introduction to Model Evaluation.srt 3.81KB
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4 117.75MB
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.srt 19.07KB
19. Working with Python Objects to Analyse Data.mp4 169.98MB
19. Working with Python Objects to Analyse Data.srt 27.29KB
20. [Python] - Tips, Code Style and Naming Conventions.mp4 81.53MB
20. [Python] - Tips, Code Style and Naming Conventions.srt 16.72KB
20. Improving the Model by Transforming the Data.mp4 126.87MB
20. Improving the Model by Transforming the Data.srt 21.61KB
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4 73.16MB
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).srt 13.94KB
20. Word Stemming & Removing Punctuation.mp4 71.44MB
20. Word Stemming & Removing Punctuation.srt 10.56KB
21.1 02 Python Intro.ipynb.zip 36.44KB
21. Download the Complete Notebook Here.html 242B
21. How to Interpret Coefficients using p-Values and Statistical Significance.mp4 65.41MB
21. How to Interpret Coefficients using p-Values and Statistical Significance.srt 10.78KB
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4 124.88MB
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).srt 17.45KB
21. Removing HTML tags with BeautifulSoup.mp4 95.82MB
21. Removing HTML tags with BeautifulSoup.srt 11.01KB
22. Any Feedback on this Section.html 513B
22. Creating a Function for Text Processing.mp4 53.91MB
22. Creating a Function for Text Processing.srt 8.41KB
22. Running Gradient Descent with a MSE Cost Function.mp4 111.22MB
22. Running Gradient Descent with a MSE Cost Function.srt 22.32KB
22. Understanding VIF & Testing for Multicollinearity.mp4 143.82MB
22. Understanding VIF & Testing for Multicollinearity.srt 25.62KB
23. A Note for the Next Lesson.html 476B
23. Model Simplification & Baysian Information Criterion.mp4 150.15MB
23. Model Simplification & Baysian Information Criterion.srt 23.14KB
23. Visualising the Optimisation on a 3D Surface.mp4 74.81MB
23. Visualising the Optimisation on a 3D Surface.srt 10.73KB
24.1 03 Gradient Descent.ipynb.zip 1.14MB
24. Advanced Subsetting on DataFrames the apply() Function.mp4 83.39MB
24. Advanced Subsetting on DataFrames the apply() Function.srt 13.53KB
24. Download the Complete Notebook Here.html 242B
24. How to Analyse and Plot Regression Residuals.mp4 64.18MB
24. How to Analyse and Plot Regression Residuals.srt 14.76KB
25. [Python] - Logical Operators to Create Subsets and Indices.mp4 86.41MB
25. [Python] - Logical Operators to Create Subsets and Indices.srt 15.50KB
25. Any Feedback on this Section.html 520B
25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4 124.42MB
25. Residual Analysis (Part 1) Predicted vs Actual Values.srt 18.24KB
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4 153.01MB
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.srt 22.76KB
26. Word Clouds & How to install Additional Python Packages.mp4 79.48MB
26. Word Clouds & How to install Additional Python Packages.srt 11.97KB
27. Creating your First Word Cloud.mp4 98.44MB
27. Creating your First Word Cloud.srt 13.67KB
27. Making Predictions (Part 1) MSE & R-Squared.mp4 152.68MB
27. Making Predictions (Part 1) MSE & R-Squared.srt 23.72KB
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4 84.85MB
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.srt 14.76KB
28. Styling the Word Cloud with a Mask.mp4 131.37MB
28. Styling the Word Cloud with a Mask.srt 16.72KB
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4 131.31MB
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.srt 20.82KB
29. Solving the Hamlet Challenge.mp4 57.10MB
29. Solving the Hamlet Challenge.srt 5.99KB
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4 134.38MB
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).srt 21.40KB
30. Styling Word Clouds with Custom Fonts.mp4 127.29MB
30. Styling Word Clouds with Custom Fonts.srt 14.79KB
31. Create the Vocabulary for the Spam Classifier.mp4 106.96MB
31. Create the Vocabulary for the Spam Classifier.srt 17.79KB
31. Python Conditional Statement Coding Exercise.html 156B
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4 244.17MB
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.srt 28.42KB
32. Coding Challenge Check for Membership in a Collection.mp4 32.34MB
32. Coding Challenge Check for Membership in a Collection.srt 6.08KB
33.1 04 Multivariable Regression.ipynb.zip 3.54MB
33.2 04 Valuation Tool.ipynb.zip 2.93KB
33.3 boston_valuation.py 3.05KB
33. Coding Challenge Find the Longest Email.mp4 54.47MB
33. Coding Challenge Find the Longest Email.srt 7.54KB
33. Download the Complete Notebook Here.html 242B
34. Any Feedback on this Section.html 512B
34. Sparse Matrix (Part 1) Split the Training and Testing Data.mp4 87.62MB
34. Sparse Matrix (Part 1) Split the Training and Testing Data.srt 15.26KB
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4 137.23MB
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.srt 22.34KB
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4 80.50MB
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.srt 12.18KB
37. Coding Challenge Solution Preparing the Test Data.mp4 28.92MB
37. Coding Challenge Solution Preparing the Test Data.srt 4.50KB
38. Checkpoint Understanding the Data.mp4 96.37MB
38. Checkpoint Understanding the Data.srt 13.65KB
39.1 06 Bayes Classifier - Pre-Processing.ipynb.zip 978.02KB
39. Download the Complete Notebook Here.html 242B
40. Any Feedback on this Section.html 519B
Download Paid Udemy Courses For Free.url 116B
GetFreeCourses.Co.url 116B
GetFreeCourses.Co.url 116B
GetFreeCourses.Co.url 116B
GetFreeCourses.Co.url 116B
How you can help GetFreeCourses.Co.txt 182B
How you can help GetFreeCourses.Co.txt 182B
How you can help GetFreeCourses.Co.txt 182B
How you can help GetFreeCourses.Co.txt 182B
Distribution statistics by country
France (FR) 1
Morocco (MA) 1
United States (US) 1
Luxembourg (LU) 1
Total 4
IP List List of IP addresses which were distributed this torrent