Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
01.1 Course Resources.html |
122B |
01.1 Course Resources.html |
122B |
01.1 Course Resources.html |
122B |
01.1 Course Resources.html |
122B |
01.1 Course Resources.html |
122B |
01.1 Course Resources.html |
122B |
01.1 Course Resources.html |
122B |
01.1 Course Resources.html |
122B |
01.1 Course Resources.html |
122B |
01.1 SpamData.zip |
22.83MB |
01.2 Course Resources.html |
122B |
01.2 SpamData.zip |
22.32MB |
01. Defining the Problem.mp4 |
39.91MB |
01. Defining the Problem.srt |
6.46KB |
01. How to Translate a Business Problem into a Machine Learning Problem.mp4 |
42.26MB |
01. How to Translate a Business Problem into a Machine Learning Problem.srt |
9.69KB |
01. Introduction to Linear Regression & Specifying the Problem.mp4 |
30.32MB |
01. Introduction to Linear Regression & Specifying the Problem.srt |
8.74KB |
01. Setting up the Notebook and Understanding Delimiters in a Dataset.mp4 |
72.50MB |
01. Setting up the Notebook and Understanding Delimiters in a Dataset.srt |
11.17KB |
01. Set up the Testing Notebook.mp4 |
26.45MB |
01. Set up the Testing Notebook.srt |
3.82KB |
01. Solving a Business Problem with Image Classification.mp4 |
30.53MB |
01. Solving a Business Problem with Image Classification.srt |
4.97KB |
01. The Human Brain and the Inspiration for Artificial Neural Networks.mp4 |
51.81MB |
01. The Human Brain and the Inspiration for Artificial Neural Networks.srt |
10.88KB |
01. What's coming up.mp4 |
7.10MB |
01. What's Coming Up.mp4 |
20.92MB |
01. What's coming up.srt |
2.49KB |
01. What's Coming Up.srt |
3.83KB |
01. What is Machine Learning.mp4 |
45.29MB |
01. What is Machine Learning.srt |
6.91KB |
01. What you'll make.mp4 |
38.44MB |
01. What you'll make.srt |
9.76KB |
01. Where next.html |
3.93KB |
01. Windows Users - Install Anaconda.mp4 |
49.60MB |
01. Windows Users - Install Anaconda.srt |
8.78KB |
02.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip |
6.39KB |
02.1 Course Resources.html |
122B |
02.1 MNIST.zip |
14.77MB |
02.1 SpamData.zip |
21.29MB |
02.1 The-Numbers Movie Budgets.html |
102B |
02.2 cost_revenue_dirty.csv |
374.68KB |
02. Create a Full Matrix.mp4 |
132.24MB |
02. Create a Full Matrix.srt |
21.72KB |
02. Gather & Clean the Data.mp4 |
97.02MB |
02. Gather & Clean the Data.srt |
13.93KB |
02. Gathering Email Data and Working with Archives & Text Editors.mp4 |
112.05MB |
02. Gathering Email Data and Working with Archives & Text Editors.srt |
14.13KB |
02. Gathering the Boston House Price Data.mp4 |
56.24MB |
02. Gathering the Boston House Price Data.srt |
8.66KB |
02. Getting the Data and Loading it into Numpy Arrays.mp4 |
52.82MB |
02. Getting the Data and Loading it into Numpy Arrays.srt |
9.01KB |
02. How a Machine Learns.mp4 |
22.78MB |
02. How a Machine Learns.srt |
7.22KB |
02. Installing Tensorflow and Keras for Jupyter.mp4 |
42.10MB |
02. Installing Tensorflow and Keras for Jupyter.srt |
6.42KB |
02. Joint Conditional Probability (Part 1) Dot Product.mp4 |
66.40MB |
02. Joint Conditional Probability (Part 1) Dot Product.srt |
12.72KB |
02. Layers, Feature Generation and Learning.mp4 |
146.70MB |
02. Layers, Feature Generation and Learning.srt |
27.79KB |
02. Mac Users - Install Anaconda.mp4 |
52.41MB |
02. Mac Users - Install Anaconda.srt |
8.05KB |
02. Saving Tensorflow Models.mp4 |
109.98MB |
02. Saving Tensorflow Models.srt |
21.26KB |
02. What is Data Science.mp4 |
42.86MB |
02. What is Data Science.srt |
5.72KB |
02. What Modules Do You Want to See.html |
431B |
03.1 ML Data Science Syllabus.pdf |
103.97KB |
03.1 MNIST_Model_Load_Files.zip |
2.84MB |
03.1 Try Jupyter in your Browser.html |
85B |
03.2 12 TF SavedModel Export Completed.ipynb.zip |
6.13KB |
03.2 cost_revenue_clean.csv |
90.82KB |
03. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4 |
87.14MB |
03. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.srt |
15.59KB |
03. Costs and Disadvantages of Neural Networks.mp4 |
91.98MB |
03. Costs and Disadvantages of Neural Networks.srt |
19.24KB |
03. Count the Tokens to Train the Naive Bayes Model.mp4 |
96.18MB |
03. Count the Tokens to Train the Naive Bayes Model.srt |
18.35KB |
03. Data Exploration and Understanding the Structure of the Input Data.mp4 |
32.41MB |
03. Data Exploration and Understanding the Structure of the Input Data.srt |
6.49KB |
03. Does LSD Make You Better at Maths.mp4 |
42.25MB |
03. Does LSD Make You Better at Maths.srt |
7.35KB |
03. Download the Syllabus.html |
1.03KB |
03. Explore & Visualise the Data with Python.mp4 |
148.15MB |
03. Explore & Visualise the Data with Python.srt |
31.02KB |
03. Gathering the CIFAR 10 Dataset.mp4 |
31.37MB |
03. Gathering the CIFAR 10 Dataset.srt |
6.10KB |
03. How to Add the Lesson Resources to the Project.mp4 |
28.90MB |
03. How to Add the Lesson Resources to the Project.srt |
4.96KB |
03. Introduction to Cost Functions.mp4 |
66.21MB |
03. Introduction to Cost Functions.srt |
9.49KB |
03. Joint Conditional Probablity (Part 2) Priors.mp4 |
63.98MB |
03. Joint Conditional Probablity (Part 2) Priors.srt |
10.54KB |
03. Loading a SavedModel.mp4 |
103.93MB |
03. Loading a SavedModel.srt |
26.16KB |
03. Stay in Touch!.html |
1.05KB |
04.1 01 Linear Regression (checkpoint).ipynb.zip |
37.64KB |
04.1 12 Rules to Learn to Code.pdf |
2.25MB |
04.1 App Brewery Cornell Notes Template.html |
141B |
04.1 TF_Keras_Classification_Images.zip |
501.10KB |
04.1 TFJS.zip |
1.54MB |
04. Clean and Explore the Data (Part 2) Find Missing Values.mp4 |
135.02MB |
04. Clean and Explore the Data (Part 2) Find Missing Values.srt |
18.59KB |
04. Converting a Model to Tensorflow.js.mp4 |
132.49MB |
04. Converting a Model to Tensorflow.js.srt |
21.13KB |
04. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4 |
70.19MB |
04. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.srt |
12.67KB |
04. Download the 12 Rules to Learn to Code.html |
1.13KB |
04. Exploring the CIFAR Data.mp4 |
110.31MB |
04. Exploring the CIFAR Data.srt |
18.23KB |
04. LaTeX Markdown and Generating Data with Numpy.mp4 |
90.52MB |
04. LaTeX Markdown and Generating Data with Numpy.srt |
17.28KB |
04. Making Predictions Comparing Joint Probabilities.mp4 |
52.34MB |
04. Making Predictions Comparing Joint Probabilities.srt |
9.67KB |
04. Preprocessing Image Data and How RGB Works.mp4 |
93.60MB |
04. Preprocessing Image Data and How RGB Works.srt |
16.15KB |
04. Sum the Tokens across the Spam and Ham Subsets.mp4 |
46.71MB |
04. Sum the Tokens across the Spam and Ham Subsets.srt |
7.76KB |
04. The Intuition behind the Linear Regression Model.mp4 |
29.63MB |
04. The Intuition behind the Linear Regression Model.srt |
10.84KB |
04. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4 |
33.39MB |
04. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.srt |
6.08KB |
04. Top Tips for Succeeding on this Course.html |
2.09KB |
05. [Python] - Variables and Types.mp4 |
71.36MB |
05. [Python] - Variables and Types.srt |
16.55KB |
05.1 math_garden_stub.zip |
44.03KB |
05. Analyse and Evaluate the Results.mp4 |
105.16MB |
05. Analyse and Evaluate the Results.srt |
22.41KB |
05. Basic Probability.mp4 |
28.55MB |
05. Basic Probability.srt |
5.26KB |
05. Calculate the Token Probabilities and Save the Trained Model.mp4 |
53.45MB |
05. Calculate the Token Probabilities and Save the Trained Model.srt |
9.44KB |
05. Course Resources List.html |
1.13KB |
05. Importing Keras Models and the Tensorflow Graph.mp4 |
65.47MB |
05. Importing Keras Models and the Tensorflow Graph.srt |
11.44KB |
05. Introducing the Website Project and Tooling.mp4 |
78.04MB |
05. Introducing the Website Project and Tooling.srt |
17.19KB |
05. Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4 |
93.16MB |
05. Pre-processing Scaling Inputs and Creating a Validation Dataset.srt |
19.92KB |
05. The Accuracy Metric.mp4 |
40.54MB |
05. The Accuracy Metric.srt |
7.65KB |
05. Understanding the Power Rule & Creating Charts with Subplots.mp4 |
90.17MB |
05. Understanding the Power Rule & Creating Charts with Subplots.srt |
18.10KB |
05. Visualising Data (Part 1) Historams, Distributions & Outliers.mp4 |
64.55MB |
05. Visualising Data (Part 1) Historams, Distributions & Outliers.srt |
14.24KB |
05. What is a Tensor.mp4 |
45.39MB |
05. What is a Tensor.srt |
8.99KB |
06. [Python] - Loops and the Gradient Descent Algorithm.mp4 |
287.46MB |
06. [Python] - Loops and the Gradient Descent Algorithm.srt |
44.03KB |
06.1 01 Linear Regression (complete).ipynb.zip |
75.28KB |
06. Coding Challenge Prepare the Test Data.mp4 |
35.60MB |
06. Coding Challenge Prepare the Test Data.srt |
5.14KB |
06. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4 |
103.60MB |
06. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.srt |
18.63KB |
06. Creating Tensors and Setting up the Neural Network Architecture.mp4 |
150.86MB |
06. Creating Tensors and Setting up the Neural Network Architecture.srt |
29.05KB |
06. Download the Complete Notebook Here.html |
242B |
06. HTML and CSS Styling.mp4 |
150.23MB |
06. HTML and CSS Styling.srt |
37.89KB |
06. Joint & Conditional Probability.mp4 |
141.82MB |
06. Joint & Conditional Probability.srt |
19.86KB |
06. Making Predictions using InceptionResNet.mp4 |
134.58MB |
06. Making Predictions using InceptionResNet.srt |
18.90KB |
06. Python Variable Coding Exercise.html |
156B |
06. Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4 |
57.32MB |
06. Visualising Data (Part 2) Seaborn and Probability Density Functions.srt |
8.98KB |
06. Visualising the Decision Boundary.mp4 |
205.31MB |
06. Visualising the Decision Boundary.srt |
33.44KB |
07. [Python] - Lists and Arrays.mp4 |
53.47MB |
07. [Python] - Lists and Arrays.srt |
12.15KB |
07.1 07 Bayes Classifier - Training.ipynb.zip |
5.82KB |
07.1 x_test2_ylabel1.txt |
4.59KB |
07.2 x_test0_ylabel7.txt |
4.59KB |
07.3 x_test1_ylabel2.txt |
4.59KB |
07. Bayes Theorem.mp4 |
83.60MB |
07. Bayes Theorem.srt |
15.16KB |
07. Coding Challenge Solution Using other Keras Models.mp4 |
103.53MB |
07. Coding Challenge Solution Using other Keras Models.srt |
12.94KB |
07. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4 |
75.11MB |
07. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.srt |
14.15KB |
07. Download the Complete Notebook Here.html |
242B |
07. False Positive vs False Negatives.mp4 |
63.25MB |
07. False Positive vs False Negatives.srt |
12.81KB |
07. Interacting with the Operating System and the Python Try-Catch Block.mp4 |
133.41MB |
07. Interacting with the Operating System and the Python Try-Catch Block.srt |
23.69KB |
07. Join the Student Community.html |
730B |
07. Loading a Tensorflow.js Model and Starting your own Server.mp4 |
188.04MB |
07. Loading a Tensorflow.js Model and Starting your own Server.srt |
37.18KB |
07. Python Loops Coding Exercise.html |
156B |
07. Working with Index Data, Pandas Series, and Dummy Variables.mp4 |
140.76MB |
07. Working with Index Data, Pandas Series, and Dummy Variables.srt |
20.72KB |
08. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4 |
291.33MB |
08. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).srt |
42.99KB |
08.1 09 Neural Nets Pretrained Image Classification.ipynb.zip |
571.83KB |
08. Adding a Favicon.mp4 |
41.51MB |
08. Adding a Favicon.srt |
7.39KB |
08. Any Feedback on this Section.html |
512B |
08. Any Feedback on this Section.html |
527B |
08. Download the Complete Notebook Here.html |
264B |
08. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4 |
100.42MB |
08. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.srt |
14.10KB |
08. Python Lists Coding Exercise.html |
156B |
08. Reading Files (Part 1) Absolute Paths and Relative Paths.mp4 |
60.90MB |
08. Reading Files (Part 1) Absolute Paths and Relative Paths.srt |
11.71KB |
08. TensorFlow Sessions and Batching Data.mp4 |
100.32MB |
08. TensorFlow Sessions and Batching Data.srt |
20.50KB |
08. The Recall Metric.mp4 |
28.15MB |
08. The Recall Metric.srt |
6.54KB |
08. Understanding Descriptive Statistics the Mean vs the Median.mp4 |
62.18MB |
08. Understanding Descriptive Statistics the Mean vs the Median.srt |
12.14KB |
09. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4 |
219.01MB |
09. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).srt |
33.54KB |
09. [Python & Pandas] - Dataframes and Series.mp4 |
153.20MB |
09. [Python & Pandas] - Dataframes and Series.srt |
28.09KB |
09.1 lsd_math_score_data.csv |
155B |
09. Any Feedback on this Section.html |
526B |
09. Introduction to Correlation Understanding Strength & Direction.mp4 |
33.09MB |
09. Introduction to Correlation Understanding Strength & Direction.srt |
8.40KB |
09. Reading Files (Part 2) Stream Objects and Email Structure.mp4 |
104.32MB |
09. Reading Files (Part 2) Stream Objects and Email Structure.srt |
14.57KB |
09. Styling an HTML Canvas.mp4 |
187.37MB |
09. Styling an HTML Canvas.srt |
39.42KB |
09. Tensorboard Summaries and the Filewriter.mp4 |
128.29MB |
09. Tensorboard Summaries and the Filewriter.srt |
23.21KB |
09. The Precision Metric.mp4 |
53.33MB |
09. The Precision Metric.srt |
9.50KB |
09. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4 |
191.54MB |
09. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.srt |
28.28KB |
10. [Python] - Module Imports.mp4 |
232.07MB |
10. [Python] - Module Imports.srt |
36.12KB |
10. Calculating Correlations and the Problem posed by Multicollinearity.mp4 |
111.43MB |
10. Calculating Correlations and the Problem posed by Multicollinearity.srt |
17.83KB |
10. Drawing on an HTML Canvas.mp4 |
171.97MB |
10. Drawing on an HTML Canvas.srt |
37.83KB |
10. Extracting the Text in the Email Body.mp4 |
47.43MB |
10. Extracting the Text in the Email Body.srt |
6.00KB |
10. The F-score or F1 Metric.mp4 |
24.71MB |
10. The F-score or F1 Metric.srt |
4.48KB |
10. Understanding the Learning Rate.mp4 |
236.60MB |
10. Understanding the Learning Rate.srt |
37.72KB |
10. Understanding the Tensorflow Graph Nodes and Edges.mp4 |
115.75MB |
10. Understanding the Tensorflow Graph Nodes and Edges.srt |
21.25KB |
10. Use the Model to Make Predictions.mp4 |
218.25MB |
10. Use the Model to Make Predictions.srt |
32.97KB |
11. [Python] - Functions - Part 1 Defining and Calling Functions.mp4 |
41.61MB |
11. [Python] - Functions - Part 1 Defining and Calling Functions.srt |
10.49KB |
11. [Python] - Generator Functions & the yield Keyword.mp4 |
133.16MB |
11. [Python] - Generator Functions & the yield Keyword.srt |
22.32KB |
11. A Naive Bayes Implementation using SciKit Learn.mp4 |
195.10MB |
11. A Naive Bayes Implementation using SciKit Learn.srt |
33.68KB |
11. Data Pre-Processing for Tensorflow.js.mp4 |
61.89MB |
11. Data Pre-Processing for Tensorflow.js.srt |
11.92KB |
11. How to Create 3-Dimensional Charts.mp4 |
193.48MB |
11. How to Create 3-Dimensional Charts.srt |
26.10KB |
11. Model Evaluation and the Confusion Matrix.mp4 |
62.76MB |
11. Model Evaluation and the Confusion Matrix.srt |
10.80KB |
11. Name Scoping and Image Visualisation in Tensorboard.mp4 |
155.37MB |
11. Name Scoping and Image Visualisation in Tensorboard.srt |
26.26KB |
11. Visualising Correlations with a Heatmap.mp4 |
168.65MB |
11. Visualising Correlations with a Heatmap.srt |
24.37KB |
12.1 08 Naive Bayes with scikit-learn.ipynb.zip |
13.26KB |
12.1 math_garden_stub 12.12 checkpoint.zip |
4.09MB |
12.2 07 Bayes Classifier - Testing, Inference & Evaluation.ipynb.zip |
243.05KB |
12. Create a Pandas DataFrame of Email Bodies.mp4 |
48.66MB |
12. Create a Pandas DataFrame of Email Bodies.srt |
7.23KB |
12. Different Model Architectures Experimenting with Dropout.mp4 |
213.67MB |
12. Different Model Architectures Experimenting with Dropout.srt |
30.11KB |
12. Download the Complete Notebook Here.html |
242B |
12. Introduction to OpenCV.mp4 |
235.33MB |
12. Introduction to OpenCV.srt |
38.37KB |
12. Model Evaluation and the Confusion Matrix.mp4 |
251.83MB |
12. Model Evaluation and the Confusion Matrix.srt |
40.50KB |
12. Python Functions Coding Exercise - Part 1.html |
156B |
12. Techniques to Style Scatter Plots.mp4 |
128.53MB |
12. Techniques to Style Scatter Plots.srt |
20.56KB |
12. Understanding Partial Derivatives and How to use SymPy.mp4 |
132.81MB |
12. Understanding Partial Derivatives and How to use SymPy.srt |
20.23KB |
13. [Python] - Functions - Part 2 Arguments & Parameters.mp4 |
128.20MB |
13. [Python] - Functions - Part 2 Arguments & Parameters.srt |
20.76KB |
13.1 10 Neural Nets - Keras CIFAR10 Classification.ipynb.zip |
120.11KB |
13. A Note for the Next Lesson.html |
476B |
13. Any Feedback on this Section.html |
509B |
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4 |
121.94MB |
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.srt |
17.96KB |
13. Download the Complete Notebook Here.html |
242B |
13. Implementing Batch Gradient Descent with SymPy.mp4 |
86.82MB |
13. Implementing Batch Gradient Descent with SymPy.srt |
12.93KB |
13. Prediction and Model Evaluation.mp4 |
110.72MB |
13. Prediction and Model Evaluation.srt |
18.90KB |
13. Resizing and Adding Padding to Images.mp4 |
157.50MB |
13. Resizing and Adding Padding to Images.srt |
26.86KB |
14. [Python] - Loops and Performance Considerations.mp4 |
131.07MB |
14. [Python] - Loops and Performance Considerations.srt |
18.07KB |
14.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip |
6.60KB |
14. Any Feedback on this Section.html |
521B |
14. Calculating the Centre of Mass and Shifting the Image.mp4 |
223.26MB |
14. Calculating the Centre of Mass and Shifting the Image.srt |
35.49KB |
14. Cleaning Data (Part 2) Working with a DataFrame Index.mp4 |
61.83MB |
14. Cleaning Data (Part 2) Working with a DataFrame Index.srt |
9.23KB |
14. Download the Complete Notebook Here.html |
242B |
14. Python Functions Coding Exercise - Part 2.html |
156B |
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4 |
214.40MB |
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.srt |
28.70KB |
15. [Python] - Functions - Part 3 Results & Return Values.mp4 |
82.63MB |
15. [Python] - Functions - Part 3 Results & Return Values.srt |
16.55KB |
15. Any Feedback on this Section.html |
499B |
15. Making a Prediction from a Digit drawn on the HTML Canvas.mp4 |
104.41MB |
15. Making a Prediction from a Digit drawn on the HTML Canvas.srt |
17.04KB |
15. Reshaping and Slicing N-Dimensional Arrays.mp4 |
140.81MB |
15. Reshaping and Slicing N-Dimensional Arrays.srt |
22.96KB |
15. Saving a JSON File with Pandas.mp4 |
56.35MB |
15. Saving a JSON File with Pandas.srt |
6.92KB |
15. Understanding Multivariable Regression.mp4 |
48.80MB |
15. Understanding Multivariable Regression.srt |
7.52KB |
16.1 math_garden_stub complete.zip |
4.09MB |
16. Adding the Game Logic.mp4 |
172.83MB |
16. Adding the Game Logic.srt |
38.09KB |
16. Concatenating Numpy Arrays.mp4 |
71.33MB |
16. Concatenating Numpy Arrays.srt |
8.91KB |
16. Data Visualisation (Part 1) Pie Charts.mp4 |
90.68MB |
16. Data Visualisation (Part 1) Pie Charts.srt |
16.19KB |
16. How to Shuffle and Split Training & Testing Data.mp4 |
64.34MB |
16. How to Shuffle and Split Training & Testing Data.srt |
11.55KB |
16. Python Functions Coding Exercise - Part 3.html |
156B |
17. [Python] - Objects - Understanding Attributes and Methods.mp4 |
156.77MB |
17. [Python] - Objects - Understanding Attributes and Methods.srt |
29.86KB |
17. Data Visualisation (Part 2) Donut Charts.mp4 |
61.78MB |
17. Data Visualisation (Part 2) Donut Charts.srt |
9.56KB |
17. Introduction to the Mean Squared Error (MSE).mp4 |
64.56MB |
17. Introduction to the Mean Squared Error (MSE).srt |
12.61KB |
17. Publish and Share your Website!.mp4 |
38.75MB |
17. Publish and Share your Website!.srt |
9.51KB |
17. Running a Multivariable Regression.mp4 |
55.56MB |
17. Running a Multivariable Regression.srt |
9.77KB |
18. Any Feedback on this Section.html |
500B |
18. How to Calculate the Model Fit with R-Squared.mp4 |
32.40MB |
18. How to Calculate the Model Fit with R-Squared.srt |
4.42KB |
18. How to Make Sense of Python Documentation for Data Visualisation.mp4 |
171.46MB |
18. How to Make Sense of Python Documentation for Data Visualisation.srt |
26.51KB |
18. Introduction to Natural Language Processing (NLP).mp4 |
50.81MB |
18. Introduction to Natural Language Processing (NLP).srt |
8.19KB |
18. Transposing and Reshaping Arrays.mp4 |
86.90MB |
18. Transposing and Reshaping Arrays.srt |
13.52KB |
19. Implementing a MSE Cost Function.mp4 |
81.11MB |
19. Implementing a MSE Cost Function.srt |
13.56KB |
19. Introduction to Model Evaluation.mp4 |
15.99MB |
19. Introduction to Model Evaluation.srt |
3.81KB |
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4 |
117.75MB |
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.srt |
19.07KB |
19. Working with Python Objects to Analyse Data.mp4 |
169.98MB |
19. Working with Python Objects to Analyse Data.srt |
27.29KB |
20. [Python] - Tips, Code Style and Naming Conventions.mp4 |
81.53MB |
20. [Python] - Tips, Code Style and Naming Conventions.srt |
16.72KB |
20. Improving the Model by Transforming the Data.mp4 |
126.87MB |
20. Improving the Model by Transforming the Data.srt |
21.61KB |
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4 |
73.16MB |
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).srt |
13.94KB |
20. Word Stemming & Removing Punctuation.mp4 |
71.44MB |
20. Word Stemming & Removing Punctuation.srt |
10.56KB |
21.1 02 Python Intro.ipynb.zip |
36.44KB |
21. Download the Complete Notebook Here.html |
242B |
21. How to Interpret Coefficients using p-Values and Statistical Significance.mp4 |
65.41MB |
21. How to Interpret Coefficients using p-Values and Statistical Significance.srt |
10.78KB |
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4 |
124.88MB |
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).srt |
17.45KB |
21. Removing HTML tags with BeautifulSoup.mp4 |
95.82MB |
21. Removing HTML tags with BeautifulSoup.srt |
11.01KB |
22. Any Feedback on this Section.html |
513B |
22. Creating a Function for Text Processing.mp4 |
53.91MB |
22. Creating a Function for Text Processing.srt |
8.41KB |
22. Running Gradient Descent with a MSE Cost Function.mp4 |
111.22MB |
22. Running Gradient Descent with a MSE Cost Function.srt |
22.32KB |
22. Understanding VIF & Testing for Multicollinearity.mp4 |
143.82MB |
22. Understanding VIF & Testing for Multicollinearity.srt |
25.62KB |
23. A Note for the Next Lesson.html |
476B |
23. Model Simplification & Baysian Information Criterion.mp4 |
150.15MB |
23. Model Simplification & Baysian Information Criterion.srt |
23.14KB |
23. Visualising the Optimisation on a 3D Surface.mp4 |
74.81MB |
23. Visualising the Optimisation on a 3D Surface.srt |
10.73KB |
24.1 03 Gradient Descent.ipynb.zip |
1.14MB |
24. Advanced Subsetting on DataFrames the apply() Function.mp4 |
83.39MB |
24. Advanced Subsetting on DataFrames the apply() Function.srt |
13.53KB |
24. Download the Complete Notebook Here.html |
242B |
24. How to Analyse and Plot Regression Residuals.mp4 |
64.18MB |
24. How to Analyse and Plot Regression Residuals.srt |
14.76KB |
25. [Python] - Logical Operators to Create Subsets and Indices.mp4 |
86.41MB |
25. [Python] - Logical Operators to Create Subsets and Indices.srt |
15.50KB |
25. Any Feedback on this Section.html |
520B |
25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4 |
124.42MB |
25. Residual Analysis (Part 1) Predicted vs Actual Values.srt |
18.24KB |
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4 |
153.01MB |
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.srt |
22.76KB |
26. Word Clouds & How to install Additional Python Packages.mp4 |
79.48MB |
26. Word Clouds & How to install Additional Python Packages.srt |
11.97KB |
27. Creating your First Word Cloud.mp4 |
98.44MB |
27. Creating your First Word Cloud.srt |
13.67KB |
27. Making Predictions (Part 1) MSE & R-Squared.mp4 |
152.68MB |
27. Making Predictions (Part 1) MSE & R-Squared.srt |
23.72KB |
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4 |
84.85MB |
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.srt |
14.76KB |
28. Styling the Word Cloud with a Mask.mp4 |
131.37MB |
28. Styling the Word Cloud with a Mask.srt |
16.72KB |
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4 |
131.31MB |
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.srt |
20.82KB |
29. Solving the Hamlet Challenge.mp4 |
57.10MB |
29. Solving the Hamlet Challenge.srt |
5.99KB |
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4 |
134.38MB |
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).srt |
21.40KB |
30. Styling Word Clouds with Custom Fonts.mp4 |
127.29MB |
30. Styling Word Clouds with Custom Fonts.srt |
14.79KB |
31. Create the Vocabulary for the Spam Classifier.mp4 |
106.96MB |
31. Create the Vocabulary for the Spam Classifier.srt |
17.79KB |
31. Python Conditional Statement Coding Exercise.html |
156B |
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4 |
244.17MB |
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.srt |
28.42KB |
32. Coding Challenge Check for Membership in a Collection.mp4 |
32.34MB |
32. Coding Challenge Check for Membership in a Collection.srt |
6.08KB |
33.1 04 Multivariable Regression.ipynb.zip |
3.54MB |
33.2 04 Valuation Tool.ipynb.zip |
2.93KB |
33.3 boston_valuation.py |
3.05KB |
33. Coding Challenge Find the Longest Email.mp4 |
54.47MB |
33. Coding Challenge Find the Longest Email.srt |
7.54KB |
33. Download the Complete Notebook Here.html |
242B |
34. Any Feedback on this Section.html |
512B |
34. Sparse Matrix (Part 1) Split the Training and Testing Data.mp4 |
87.62MB |
34. Sparse Matrix (Part 1) Split the Training and Testing Data.srt |
15.26KB |
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4 |
137.23MB |
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.srt |
22.34KB |
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4 |
80.50MB |
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.srt |
12.18KB |
37. Coding Challenge Solution Preparing the Test Data.mp4 |
28.92MB |
37. Coding Challenge Solution Preparing the Test Data.srt |
4.50KB |
38. Checkpoint Understanding the Data.mp4 |
96.37MB |
38. Checkpoint Understanding the Data.srt |
13.65KB |
39.1 06 Bayes Classifier - Pre-Processing.ipynb.zip |
978.02KB |
39. Download the Complete Notebook Here.html |
242B |
40. Any Feedback on this Section.html |
519B |
Download Paid Udemy Courses For Free.url |
116B |
GetFreeCourses.Co.url |
116B |
GetFreeCourses.Co.url |
116B |
GetFreeCourses.Co.url |
116B |
GetFreeCourses.Co.url |
116B |
How you can help GetFreeCourses.Co.txt |
182B |
How you can help GetFreeCourses.Co.txt |
182B |
How you can help GetFreeCourses.Co.txt |
182B |
How you can help GetFreeCourses.Co.txt |
182B |