Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
[TGx]Downloaded from torrentgalaxy.to .txt |
585B |
0 |
69.47KB |
1 |
100.54KB |
10 |
419.96KB |
10 - 02 Type Conversion Examples.mp4 |
59.84MB |
1 - 01 Introduction To Recommender Systems.mp4 |
33.42MB |
11 |
627.06KB |
11 - 03 Operators.mp4 |
161.46MB |
12 |
584.64KB |
12 - 04 Collections.mp4 |
41.63MB |
13 |
735.22KB |
13 - 05 List Examples.mp4 |
109.75MB |
14 |
572.12KB |
14 - 06 Tuples Examples.mp4 |
52.40MB |
15 |
94.24KB |
15 - 07 Dictionaries Examples.mp4 |
87.28MB |
16 |
402.52KB |
16 - 09 Conditionals.mp4 |
38.05MB |
17 |
494.07KB |
17 - 10 If Statement Examples.mp4 |
118.03MB |
18 |
87.79KB |
18 - 11 Loops.mp4 |
167.03MB |
19 |
1023.73KB |
19 - 12 Functions.mp4 |
86.44MB |
2 |
557.19KB |
20 |
1006.55KB |
20 - 13 Parameters And Return Values Examples.mp4 |
78.52MB |
2 - 02 How To Evaluate Recommender Systems.mp4 |
51.03MB |
21 |
366.33KB |
21 - 14 Classes And Objects.mp4 |
223.26MB |
22 |
120.37KB |
22 - 15 Inheritance Examples.mp4 |
130.64MB |
23 |
26.11KB |
23 - 16 Static Members Examples.mp4 |
78.61MB |
24 |
474.33KB |
24 - 17 Summary And Outro.mp4 |
20.84MB |
25 |
162.35KB |
25 - Source Code.html |
27B |
26 |
994.02KB |
26 - 01 Load Data As Pandas Dataframes.mp4 |
95.71MB |
27 |
410.50KB |
27 - 02 Merge Movies And Ratings Dataframes.mp4 |
58.60MB |
28 |
592.01KB |
28 - 03 Build A Correlation Matrix.mp4 |
45.47MB |
29 |
802.22KB |
29 - 04 Test The Recommender.mp4 |
49.61MB |
3 |
363.55KB |
30 |
212.39KB |
3 - 03 Content Based Recommendations.mp4 |
17.88MB |
30 - Source Files.html |
27B |
30 - SourceFiles.zip |
1.65MB |
31 |
212.44KB |
31 - 00 Project Preview.mp4 |
19.30MB |
32 |
930.71KB |
32 - 00A What Is Machine Learning.mp4 |
27.70MB |
33 |
892.63KB |
33 - 00B Types Of Machine Learning Models.mp4 |
52.53MB |
34 |
486.30KB |
34 - 00C What Is Supervised Learning.mp4 |
59.03MB |
35 |
613.16KB |
35 - 01 Load Data Into Dataframes.mp4 |
49.77MB |
36 |
991.54KB |
36 - 02 Find A Recommendation Based On Different Movie Features.mp4 |
104.47MB |
37 |
230.91KB |
37 - 03 Calculate Distance Between Users.mp4 |
34.97MB |
38 |
396.26KB |
38 - 04 Find Similar Users With Euclidean Distance.mp4 |
47.44MB |
39 |
121.31KB |
39 - Source Files.html |
27B |
39 - SourceFiles.zip |
1.66MB |
4 |
142.25KB |
40 |
572.71KB |
40 - 05 Define Similarity Between Users.mp4 |
37.19MB |
4 - 04 Neighborhood Based Collaborative Filtering.mp4 |
14.34MB |
41 |
852.13KB |
41 - 06 Find Top Similar Users.mp4 |
47.17MB |
42 |
539.83KB |
42 - 07 Recommend A Movie Based On User Similarity.mp4 |
42.77MB |
43 |
315.54KB |
43 - Source Files.html |
27B |
43 - SourceFiles.zip |
851.30KB |
44 |
237.43KB |
44 - 08A What Is K Nearest Neighbours.mp4 |
37.61MB |
45 |
806.83KB |
45 - 08B Recommend A Movie With A K Nearest Neighbors Classifier.mp4 |
70.88MB |
46 |
121.07KB |
46 - 09 Create A Sample User For Testing.mp4 |
55.09MB |
47 |
377.59KB |
47 - 10 Recommend Movies To Sample User.mp4 |
20.54MB |
48 |
203.85KB |
48 - Source Files.html |
27B |
48 - SourceFiles.zip |
852.74KB |
49 |
550.28KB |
49 - 00 Project Preview.mp4 |
14.23MB |
5 |
257.46KB |
50 |
401.70KB |
50 - 01 Load Data For Machine Learning.mp4 |
105.86MB |
51 |
975.41KB |
51 - 02 Process Data For Machine Learning.mp4 |
77.91MB |
52 |
398.42KB |
52 - 03 Build Categories.mp4 |
55.79MB |
53 |
830.73KB |
53 - Source Files.html |
27B |
53 - SourceFiles.zip |
889.97KB |
54 |
144.14KB |
54 - 04A Regression Introduction.mp4 |
35.86MB |
55 |
30.27KB |
55 - 04B What Is Regression.mp4 |
85.08MB |
56 |
123.92KB |
56 - 04C Build A Ridge Regression Model.mp4 |
72.64MB |
57 |
589.37KB |
57 - 05 Evaluate Model Error.mp4 |
48.88MB |
58 |
154.19KB |
58 - 06 Visualize Top Features Affecting Rating.mp4 |
58.42MB |
59 |
304.96KB |
59 - 07 Build A Lasso Regression Model.mp4 |
55.79MB |
5 - Source Files.html |
27B |
5 - SourceFiles.zip |
4.60MB |
6 |
565.84KB |
60 |
160.52KB |
60 - 08 Visualize Top Features From Lasso Regression.mp4 |
42.21MB |
6 - 00 About Mammoth Interactive.mp4 |
8.64MB |
61 |
475.86KB |
61 - 09 Determine Which Model Is Best.mp4 |
17.02MB |
62 |
901.13KB |
62 - Source Files.html |
27B |
62 - SourceFiles.zip |
1.84MB |
63 |
718.16KB |
63 - 01 Load Data For A Neural Network.mp4 |
62.97MB |
64 |
125.28KB |
64 - 02 Build A Singular Value Decomposition Algorithm.mp4 |
73.02MB |
65 |
1001.09KB |
65 - 03 Calculate Model Error.mp4 |
62.54MB |
66 |
677.11KB |
66 - Source Files.html |
27B |
66 - SourceFIles.zip |
1.33MB |
67 |
787.23KB |
67 - 01 What Is Deep Learning.mp4 |
34.88MB |
68 |
990.82KB |
68 - 02 What Is A Neural Network.mp4 |
39.61MB |
69 |
369.65KB |
69 - 03 What Is Unsupervised Learning.mp4 |
40.80MB |
7 |
143.18KB |
70 |
413.21KB |
70 - 04 Build A Neural Network.mp4 |
95.59MB |
7 - 01 How To Learn Online Effectively.mp4 |
74.00MB |
71 |
163.04KB |
71 - 05 Train The Neural Network.mp4 |
87.43MB |
72 |
350.89KB |
72 - Source File.html |
27B |
72 - SourceFiles.zip |
683.92KB |
73 |
355.73KB |
73 - 00 Project Preview.mp4 |
14.03MB |
74 |
359.68KB |
74 - 01 Load Data Into Dataframes.mp4 |
44.69MB |
75 - 02 Explore Data In Our Dataset.mp4 |
20.12MB |
76 - 03 Build A Rating Pivot Table.mp4 |
30.85MB |
77 - 04 Calculate Average Rating Of A Movie.mp4 |
41.88MB |
78 - 05 Find Ratings For A Movie In Every Slice.mp4 |
40.46MB |
79 - 06 Find Rating Averages For Every Movie In The Slice.mp4 |
54.13MB |
8 |
537.80KB |
80 - 07 Build An Average Ratings Column.mp4 |
91.39MB |
8 - 00 Intro To Course And Python.mp4 |
57.22MB |
81 - Source Files.html |
27B |
81 - SourceFiles.zip |
1.65MB |
9 |
296.22KB |
9 - 01 Variables.mp4 |
106.45MB |
TutsNode.net.txt |
63B |