Torrent Info
Title [FreeCourseSite.com] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science
Category
Size 6.33GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[CourseClub.ME].url 122B
[FCS Forum].url 133B
[FreeCourseSite.com].url 127B
1. Applications of Machine Learning.mp4 7.99MB
1. Applications of Machine Learning.vtt 4.64KB
1. Apriori Intuition.mp4 35.02MB
1. Apriori Intuition.vtt 22.59KB
1. Bayes Theorem.mp4 43.90MB
1. Bayes Theorem.vtt 30.66KB
1. Decision Tree Classification Intuition.mp4 18.79MB
1. Decision Tree Classification Intuition.vtt 18.80MB
1. Decision Tree Regression Intuition.mp4 22.69MB
1. Decision Tree Regression Intuition.vtt 15.25KB
1. Eclat Intuition.mp4 10.65MB
1. Eclat Intuition.vtt 7.12KB
1. False Positives & False Negatives.mp4 13.65MB
1. False Positives & False Negatives.vtt 10.19KB
1. Hierarchical Clustering Intuition.mp4 16.53MB
1. Hierarchical Clustering Intuition.vtt 16.53MB
1. How to get the dataset.mp4 11.71MB
1. How to get the dataset.mp4 11.72MB
1. How to get the dataset.mp4 11.71MB
1. How to get the dataset.mp4 11.71MB
1. How to get the dataset.mp4 11.71MB
1. How to get the dataset.mp4 11.71MB
1. How to get the dataset.vtt 4.23KB
1. How to get the dataset.vtt 11.72MB
1. How to get the dataset.vtt 4.23KB
1. How to get the dataset.vtt 4.23KB
1. How to get the dataset.vtt 4.23KB
1. How to get the dataset.vtt 4.23KB
1. Kernel SVM Intuition.mp4 5.79MB
1. Kernel SVM Intuition.vtt 3.92KB
1. K-Means Clustering Intuition.mp4 26.86MB
1. K-Means Clustering Intuition.vtt 20.91KB
1. K-Nearest Neighbor Intuition.mp4 9.28MB
1. K-Nearest Neighbor Intuition.vtt 7.23KB
1. Linear Discriminant Analysis (LDA) Intuition.mp4 26.98MB
1. Linear Discriminant Analysis (LDA) Intuition.vtt 4.53KB
1. Logistic Regression Intuition.mp4 29.17MB
1. Logistic Regression Intuition.vtt 20.91KB
1. Plan of attack.mp4 4.74MB
1. Plan of attack.mp4 5.90MB
1. Plan of attack.vtt 3.54KB
1. Plan of attack.vtt 4.63KB
1. Polynomial Regression Intuition.mp4 9.44MB
1. Polynomial Regression Intuition.vtt 7.07KB
1. Principal Component Analysis (PCA) Intuition.mp4 32.11MB
1. Principal Component Analysis (PCA) Intuition.vtt 4.45KB
1. Random Forest Classification Intuition.mp4 19.43MB
1. Random Forest Classification Intuition.vtt 6.41KB
1. Random Forest Regression Intuition.mp4 13.82MB
1. Random Forest Regression Intuition.vtt 9.29KB
1. R-Squared Intuition.mp4 8.85MB
1. R-Squared Intuition.vtt 6.46KB
1. SVM Intuition.mp4 18.01MB
1. SVM Intuition.vtt 14.19KB
1. The Multi-Armed Bandit Problem.mp4 30.19MB
1. The Multi-Armed Bandit Problem.vtt 19.44KB
1. Thompson Sampling Intuition.mp4 37.27MB
1. Thompson Sampling Intuition.vtt 24.09KB
1. Welcome to Part 10 - Model Selection & Boosting.html 899B
1. Welcome to Part 1 - Data Preprocessing.mp4 2.99MB
1. Welcome to Part 1 - Data Preprocessing.vtt 2.29KB
1. Welcome to Part 2 - Regression.html 875B
1. Welcome to Part 3 - Classification.html 831B
1. Welcome to Part 4 - Clustering.html 734B
1. Welcome to Part 5 - Association Rule Learning.html 425B
1. Welcome to Part 6 - Reinforcement Learning.html 804B
1. Welcome to Part 7 - Natural Language Processing.html 1.69KB
1. Welcome to Part 8 - Deep Learning.html 870B
1. Welcome to Part 9 - Dimensionality Reduction.html 1.26KB
1. YOUR SPECIAL BONUS.html 4.54KB
10. Business Problem Description.mp4 16.38MB
10. Business Problem Description.vtt 6.47KB
10. Feature Scaling.mp4 34.62MB
10. Feature Scaling.vtt 20.79KB
10. HC in R - Step 1.mp4 7.38MB
10. HC in R - Step 1.vtt 5.67KB
10. How to get the dataset.mp4 11.71MB
10. How to get the dataset.vtt 4.23KB
10. Installing R and R Studio (Mac, Linux & Windows).mp4 17.55MB
10. Installing R and R Studio (Mac, Linux & Windows).vtt 7.94KB
10. Logistic Regression in R - Step 2.mp4 7.85MB
10. Logistic Regression in R - Step 2.vtt 3.92KB
10. Multiple Linear Regression in Python - Step 2.mp4 7.23MB
10. Multiple Linear Regression in Python - Step 2.vtt 3.63KB
10. Natural Language Processing in Python - Step 7.mp4 17.10MB
10. Natural Language Processing in Python - Step 7.vtt 8.60KB
10. Polynomial Regression in R - Step 3.mp4 43.31MB
10. Polynomial Regression in R - Step 3.vtt 27.44KB
10. Simple Linear Regression in R - Step 2.mp4 14.36MB
10. Simple Linear Regression in R - Step 2.vtt 8.00KB
10. Upper Confidence Bound in R - Step 3.mp4 47.20MB
10. Upper Confidence Bound in R - Step 3.vtt 21.98KB
11. And here is our Data Preprocessing Template!.mp4 19.67MB
11. And here is our Data Preprocessing Template!.vtt 12.67KB
11. BONUS Meet your instructors.html 1.04KB
11. HC in R - Step 2.mp4 11.15MB
11. HC in R - Step 2.vtt 7.32KB
11. Installing Keras.html 1.42KB
11. Installing Keras.html 927B
11. Logistic Regression in R - Step 3.mp4 14.59MB
11. Logistic Regression in R - Step 3.vtt 6.65KB
11. Multiple Linear Regression in Python - Step 3.mp4 14.29MB
11. Multiple Linear Regression in Python - Step 3.vtt 7.38KB
11. Natural Language Processing in Python - Step 8.mp4 39.48MB
11. Natural Language Processing in Python - Step 8.vtt 20.80KB
11. Polynomial Regression in R - Step 4.mp4 22.34MB
11. Polynomial Regression in R - Step 4.vtt 22.36MB
11. Simple Linear Regression in R - Step 3.mp4 8.64MB
11. Simple Linear Regression in R - Step 3.vtt 4.94KB
11. Upper Confidence Bound in R - Step 4.mp4 7.41MB
11. Upper Confidence Bound in R - Step 4.vtt 3.86KB
12. ANN in Python - Step 1.mp4 29.31MB
12. ANN in Python - Step 1.vtt 17.41KB
12. CNN in Python - Step 1.mp4 24.93MB
12. CNN in Python - Step 1.vtt 16.16KB
12. Data Preprocessing.html 118B
12. HC in R - Step 3.mp4 7.81MB
12. HC in R - Step 3.vtt 4.29KB
12. Logistic Regression in R - Step 4.mp4 6.91MB
12. Logistic Regression in R - Step 4.vtt 3.55KB
12. Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4 23.82MB
12. Multiple Linear Regression in Python - Backward Elimination - Preparation.vtt 13.13KB
12. Natural Language Processing in Python - Step 9.mp4 14.01MB
12. Natural Language Processing in Python - Step 9.vtt 7.25KB
12. R Regression Template.mp4 25.41MB
12. R Regression Template.vtt 16.72KB
12. Simple Linear Regression in R - Step 4.mp4 37.37MB
12. Simple Linear Regression in R - Step 4.vtt 21.21KB
12. Some Additional Resources.html 551B
13. ANN in Python - Step 2.mp4 48.09MB
13. ANN in Python - Step 2.vtt 24.77KB
13. CNN in Python - Step 2.mp4 5.86MB
13. CNN in Python - Step 2.vtt 3.92KB
13. FAQBot!.html 1.76KB
13. HC in R - Step 4.mp4 7.44MB
13. HC in R - Step 4.vtt 3.49KB
13. Logistic Regression in R - Step 5.mp4 51.68MB
13. Logistic Regression in R - Step 5.vtt 26.00KB
13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.mp4 32.59MB
13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.vtt 17.57KB
13. Natural Language Processing in Python - Step 10.mp4 24.13MB
13. Natural Language Processing in Python - Step 10.vtt 12.49KB
13. Simple Linear Regression.html 118B
14. ANN in Python - Step 3.mp4 8.38MB
14. ANN in Python - Step 3.vtt 4.62KB
14. CNN in Python - Step 3.mp4 2.22MB
14. CNN in Python - Step 3.vtt 1.56KB
14. HC in R - Step 5.mp4 6.89MB
14. HC in R - Step 5.vtt 3.66KB
14. Homework Challenge.html 1.37KB
14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4 27.17MB
14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.vtt 12.68KB
14. R Classification Template.mp4 12.47MB
14. R Classification Template.vtt 6.06KB
15. ANN in Python - Step 4.mp4 5.88MB
15. ANN in Python - Step 4.vtt 3.46KB
15. CNN in Python - Step 4.mp4 27.18MB
15. CNN in Python - Step 4.vtt 16.89KB
15. Hierarchical Clustering.html 118B
15. Logistic Regression.html 118B
15. Multiple Linear Regression in Python - Automatic Backward Elimination.html 2.14KB
15. Natural Language Processing in R - Step 1.mp4 40.38MB
15. Natural Language Processing in R - Step 1.vtt 40.38MB
16.1 Clustering-Pros-Cons.pdf.pdf 25.76KB
16. ANN in Python - Step 5.mp4 29.58MB
16. ANN in Python - Step 5.vtt 17.06KB
16. CNN in Python - Step 5.mp4 9.91MB
16. CNN in Python - Step 5.vtt 6.59KB
16. Conclusion of Part 4 - Clustering.html 516B
16. Multiple Linear Regression in R - Step 1.mp4 17.94MB
16. Multiple Linear Regression in R - Step 1.vtt 10.50KB
16. Natural Language Processing in R - Step 2.mp4 17.48MB
16. Natural Language Processing in R - Step 2.vtt 11.33KB
17. ANN in Python - Step 6.mp4 7.06MB
17. ANN in Python - Step 6.vtt 4.03KB
17. CNN in Python - Step 6.mp4 9.71MB
17. CNN in Python - Step 6.vtt 6.71KB
17. Multiple Linear Regression in R - Step 2.mp4 25.93MB
17. Multiple Linear Regression in R - Step 2.vtt 13.83KB
17. Natural Language Processing in R - Step 3.mp4 13.52MB
17. Natural Language Processing in R - Step 3.vtt 8.83KB
18. ANN in Python - Step 7.mp4 8.99MB
18. ANN in Python - Step 7.vtt 5.17KB
18. CNN in Python - Step 7.mp4 12.93MB
18. CNN in Python - Step 7.vtt 8.02KB
18. Multiple Linear Regression in R - Step 3.mp4 10.41MB
18. Multiple Linear Regression in R - Step 3.vtt 6.29KB
18. Natural Language Processing in R - Step 4.mp4 6.51MB
18. Natural Language Processing in R - Step 4.vtt 4.20KB
19. ANN in Python - Step 8.mp4 18.17MB
19. ANN in Python - Step 8.vtt 18.18MB
19. CNN in Python - Step 8.mp4 6.80MB
19. CNN in Python - Step 8.vtt 3.91KB
19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4 39.73MB
19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.vtt 24.57KB
19. Natural Language Processing in R - Step 5.mp4 4.57MB
19. Natural Language Processing in R - Step 5.vtt 2.83KB
2. Adjusted R-Squared Intuition.mp4 19.28MB
2. Adjusted R-Squared Intuition.vtt 12.99KB
2. Algorithm Comparison UCB vs Thompson Sampling.mp4 14.09MB
2. Algorithm Comparison UCB vs Thompson Sampling.vtt 9.89KB
2. BONUS Learning Paths.html 2.37KB
2. Confusion Matrix.mp4 8.22MB
2. Confusion Matrix.vtt 6.74KB
2. Dataset + Business Problem Description.mp4 6.63MB
2. Dataset + Business Problem Description.mp4 9.98MB
2. Dataset + Business Problem Description.vtt 3.71KB
2. Dataset + Business Problem Description.vtt 5.11KB
2. Get the dataset.mp4 21.15MB
2. Get the dataset.vtt 9.39KB
2. Hierarchical Clustering How Dendrograms Work.mp4 17.47MB
2. Hierarchical Clustering How Dendrograms Work.vtt 12.84KB
2. How to get the dataset.mp4 11.71MB
2. How to get the dataset.mp4 11.71MB
2. How to get the dataset.mp4 11.72MB
2. How to get the dataset.mp4 11.71MB
2. How to get the dataset.mp4 11.71MB
2. How to get the dataset.mp4 11.72MB
2. How to get the dataset.mp4 11.72MB
2. How to get the dataset.mp4 11.71MB
2. How to get the dataset.mp4 11.71MB
2. How to get the dataset.mp4 11.71MB
2. How to get the dataset.mp4 11.71MB
2. How to get the dataset.mp4 11.72MB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. How to get the dataset.vtt 4.23KB
2. Kernel PCA in Python.mp4 33.38MB
2. Kernel PCA in Python.vtt 18.79KB
2. k-Fold Cross Validation in Python.mp4 32.83MB
2. k-Fold Cross Validation in Python.vtt 17.62KB
2. K-Means Random Initialization Trap.mp4 15.36MB
2. K-Means Random Initialization Trap.vtt 11.61KB
2. Mapping to a higher dimension.mp4 13.74MB
2. Mapping to a higher dimension.vtt 9.32KB
2. Naive Bayes Intuition.mp4 27.79MB
2. Naive Bayes Intuition.vtt 20.89KB
2. Natural Language Processing Intuition.mp4 29.69MB
2. Natural Language Processing Intuition.vtt 6.26KB
2. SVR Intuition.mp4 46.59MB
2. SVR Intuition.vtt 10.11KB
2. The Neuron.mp4 29.87MB
2. The Neuron.vtt 21.91KB
2. Upper Confidence Bound (UCB) Intuition.mp4 29.33MB
2. Upper Confidence Bound (UCB) Intuition.vtt 29.33MB
2. What are convolutional neural networks.mp4 29.50MB
2. What are convolutional neural networks.vtt 19.34KB
2. What is Deep Learning.mp4 31.31MB
2. What is Deep Learning.vtt 15.89KB
2. XGBoost in Python - Step 1.mp4 21.39MB
2. XGBoost in Python - Step 1.vtt 12.05KB
20. ANN in Python - Step 9.mp4 16.90MB
20. ANN in Python - Step 9.vtt 8.24KB
20. CNN in Python - Step 9.mp4 46.85MB
20. CNN in Python - Step 9.vtt 25.49KB
20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 17.24MB
20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.vtt 10.59KB
20. Natural Language Processing in R - Step 6.mp4 12.74MB
20. Natural Language Processing in R - Step 6.vtt 7.32KB
21. ANN in Python - Step 10.mp4 17.09MB
21. ANN in Python - Step 10.vtt 9.03KB
21. CNN in Python - Step 10.mp4 20.60MB
21. CNN in Python - Step 10.vtt 11.28KB
21. Multiple Linear Regression in R - Automatic Backward Elimination.html 726B
21. Natural Language Processing in R - Step 7.mp4 7.52MB
21. Natural Language Processing in R - Step 7.vtt 4.99KB
22. ANN in R - Step 1.mp4 38.55MB
22. ANN in R - Step 1.vtt 23.03KB
22. CNN in R.html 2.38KB
22. Multiple Linear Regression.html 118B
22. Natural Language Processing in R - Step 8.mp4 13.27MB
22. Natural Language Processing in R - Step 8.vtt 6.97KB
23. ANN in R - Step 2.mp4 14.17MB
23. ANN in R - Step 2.vtt 8.85KB
23. Natural Language Processing in R - Step 9.mp4 28.99MB
23. Natural Language Processing in R - Step 9.vtt 17.18KB
24. ANN in R - Step 3.mp4 28.94MB
24. ANN in R - Step 3.vtt 16.38KB
24. Natural Language Processing in R - Step 10.mp4 41.19MB
24. Natural Language Processing in R - Step 10.vtt 22.89KB
25. ANN in R - Step 4 (Last step).mp4 33.44MB
25. ANN in R - Step 4 (Last step).vtt 17.95KB
25. Homework Challenge.html 1.40KB
3.1 Eclat.zip.zip 48.54KB
3. Accuracy Paradox.mp4 3.80MB
3. Accuracy Paradox.vtt 2.94KB
3. Apriori in R - Step 1.mp4 42.87MB
3. Apriori in R - Step 1.vtt 42.89MB
3. Decision Tree Classification in Python.mp4 29.80MB
3. Decision Tree Classification in Python.vtt 17.21KB
3. Decision Tree Regression in Python.mp4 33.54MB
3. Decision Tree Regression in Python.vtt 21.13KB
3. Eclat in R.mp4 20.68MB
3. Eclat in R.vtt 14.11KB
3. Evaluating Regression Models Performance - Homework's Final Part.mp4 21.89MB
3. Evaluating Regression Models Performance - Homework's Final Part.vtt 11.59KB
3. Hierarchical Clustering Using Dendrograms.mp4 22.81MB
3. Hierarchical Clustering Using Dendrograms.vtt 15.86KB
3. How to get the dataset.mp4 11.71MB
3. How to get the dataset.mp4 11.72MB
3. How to get the dataset.mp4 11.71MB
3. How to get the dataset.vtt 4.23KB
3. How to get the dataset.vtt 4.23KB
3. How to get the dataset.vtt 4.23KB
3. Importing the Libraries.mp4 11.08MB
3. Importing the Libraries.vtt 6.98KB
3. Kernel PCA in R.mp4 56.57MB
3. Kernel PCA in R.vtt 26.63KB
3. k-Fold Cross Validation in R.mp4 43.63MB
3. k-Fold Cross Validation in R.vtt 24.24KB
3. K-Means Selecting The Number Of Clusters.mp4 23.13MB
3. K-Means Selecting The Number Of Clusters.vtt 16.55KB
3. K-NN in Python.mp4 35.21MB
3. K-NN in Python.vtt 18.76KB
3. LDA in Python.mp4 45.42MB
3. LDA in Python.vtt 23.05KB
3. Logistic Regression in Python - Step 1.mp4 12.93MB
3. Logistic Regression in Python - Step 1.vtt 2.26MB
3. Multiple Linear Regression Intuition - Step 1.mp4 1.82MB
3. Multiple Linear Regression Intuition - Step 1.vtt 1.43KB
3. Naive Bayes Intuition (Challenge Reveal).mp4 13.28MB
3. Naive Bayes Intuition (Challenge Reveal).vtt 8.57KB
3. PCA in Python - Step 1.mp4 31.96MB
3. PCA in Python - Step 1.vtt 15.42KB
3. Polynomial Regression in Python - Step 1.mp4 24.89MB
3. Polynomial Regression in Python - Step 1.vtt 15.69KB
3. Random Forest Classification in Python.mp4 47.15MB
3. Random Forest Classification in Python.vtt 27.43KB
3. Random Forest Regression in Python.mp4 39.47MB
3. Random Forest Regression in Python.vtt 24.45KB
3. Simple Linear Regression Intuition - Step 1.mp4 9.48MB
3. Simple Linear Regression Intuition - Step 1.vtt 7.50KB
3. Step 1 - Convolution Operation.mp4 31.02MB
3. Step 1 - Convolution Operation.vtt 20.41KB
3. SVM in Python.mp4 31.16MB
3. SVM in Python.vtt 16.91KB
3. SVR in Python.mp4 46.18MB
3. SVR in Python.vtt 27.45KB
3. The Activation Function.mp4 14.76MB
3. The Activation Function.vtt 10.56KB
3. The Kernel Trick.mp4 29.28MB
3. The Kernel Trick.vtt 14.43KB
3. Why Machine Learning is the Future.mp4 12.81MB
3. Why Machine Learning is the Future.vtt 8.12KB
3. XGBoost in Python - Step 2.mp4 31.98MB
3. XGBoost in Python - Step 2.vtt 32.00MB
4.1 SVM.zip.zip 8.27KB
4. Apriori in R - Step 2.mp4 30.50MB
4. Apriori in R - Step 2.vtt 20.59KB
4. CAP Curve.mp4 18.68MB
4. CAP Curve.vtt 14.55KB
4. Decision Tree Classification in R.mp4 51.18MB
4. Decision Tree Classification in R.vtt 25.86KB
4. Decision Tree Regression in R.mp4 44.37MB
4. Decision Tree Regression in R.vtt 28.54KB
4. Grid Search in Python - Step 1.mp4 38.21MB
4. Grid Search in Python - Step 1.vtt 19.29KB
4. How do Neural Networks work.mp4 23.53MB
4. How do Neural Networks work.vtt 16.84KB
4. How to get the dataset.mp4 11.71MB
4. How to get the dataset.mp4 11.72MB
4. How to get the dataset.vtt 4.23KB
4. How to get the dataset.vtt 4.23KB
4. Important notes, tips & tricks for this course.html 3.24KB
4. Importing the Dataset.mp4 23.31MB
4. Importing the Dataset.vtt 16.59KB
4. Interpreting Linear Regression Coefficients.mp4 24.21MB
4. Interpreting Linear Regression Coefficients.vtt 12.02KB
4. K-NN in R.mp4 41.37MB
4. K-NN in R.vtt 20.68KB
4. LDA in R.mp4 51.29MB
4. LDA in R.vtt 25.61KB
4. Logistic Regression in Python - Step 2.mp4 8.24MB
4. Logistic Regression in Python - Step 2.vtt 4.42KB
4. Multiple Linear Regression Intuition - Step 2.mp4 1.78MB
4. Multiple Linear Regression Intuition - Step 2.vtt 1.34KB
4. Naive Bayes Intuition (Extras).mp4 18.94MB
4. Naive Bayes Intuition (Extras).vtt 14.29KB
4. Natural Language Processing in Python - Step 1.mp4 35.20MB
4. Natural Language Processing in Python - Step 1.vtt 15.95KB
4. PCA in Python - Step 2.mp4 22.07MB
4. PCA in Python - Step 2.vtt 10.35KB
4. Polynomial Regression in Python - Step 2.mp4 27.10MB
4. Polynomial Regression in Python - Step 2.vtt 15.33KB
4. Random Forest Classification in R.mp4 49.39MB
4. Random Forest Classification in R.vtt 28.85KB
4. Random Forest Regression in R.mp4 40.34MB
4. Random Forest Regression in R.vtt 25.10KB
4. Simple Linear Regression Intuition - Step 2.mp4 5.37MB
4. Simple Linear Regression Intuition - Step 2.vtt 3.93KB
4. Step 1(b) - ReLU Layer.mp4 14.09MB
4. Step 1(b) - ReLU Layer.vtt 8.08KB
4. SVM in R.mp4 32.26MB
4. SVM in R.vtt 16.36KB
4. SVR in R.mp4 25.87MB
4. SVR in R.vtt 16.61KB
4. Thompson Sampling in Python - Step 1.mp4 43.13MB
4. Thompson Sampling in Python - Step 1.vtt 25.19KB
4. Types of Kernel Functions.mp4 12.31MB
4. Types of Kernel Functions.vtt 4.37KB
4. Upper Confidence Bound in Python - Step 1.mp4 31.53MB
4. Upper Confidence Bound in Python - Step 1.vtt 19.05KB
4. XGBoost in R.mp4 47.26MB
4. XGBoost in R.vtt 22.59KB
5.1 Machine_Learning_A_Z_Q_A.pdf.pdf 2.26MB
5. Apriori in R - Step 3.mp4 43.84MB
5. Apriori in R - Step 3.vtt 27.72KB
5. CAP Curve Analysis.mp4 11.52MB
5. CAP Curve Analysis.vtt 8.35KB
5. Conclusion of Part 2 - Regression.html 2.91KB
5. Grid Search in Python - Step 2.mp4 29.52MB
5. Grid Search in Python - Step 2.vtt 13.28KB
5. HC in Python - Step 1.mp4 10.72MB
5. HC in Python - Step 1.vtt 6.79KB
5. How do Neural Networks learn.mp4 26.55MB
5. How do Neural Networks learn.vtt 16.53KB
5. How to get the dataset.mp4 11.71MB
5. How to get the dataset.mp4 11.71MB
5. How to get the dataset.vtt 4.23KB
5. How to get the dataset.vtt 4.23KB
5. K-Means Clustering in Python.mp4 39.77MB
5. K-Means Clustering in Python.vtt 25.22KB
5. K-Nearest Neighbor.html 118B
5. Logistic Regression in Python - Step 3.mp4 5.98MB
5. Logistic Regression in Python - Step 3.vtt 3.66KB
5. Multiple Linear Regression Intuition - Step 3.mp4 14.28MB
5. Multiple Linear Regression Intuition - Step 3.vtt 9.71KB
5. Natural Language Processing in Python - Step 2.mp4 21.96MB
5. Natural Language Processing in Python - Step 2.vtt 13.74KB
5. PCA in Python - Step 3.mp4 25.51MB
5. PCA in Python - Step 3.vtt 12.94KB
5. Polynomial Regression in Python - Step 3.mp4 42.98MB
5. Polynomial Regression in Python - Step 3.vtt 42.99MB
5. Simple Linear Regression in Python - Step 1.mp4 21.72MB
5. Simple Linear Regression in Python - Step 1.vtt 13.88KB
5. Step 2 - Pooling.mp4 40.24MB
5. Step 2 - Pooling.vtt 18.41KB
5. THANK YOU bonus video.mp4 52.24MB
5. THANK YOU bonus video.vtt 2.04KB
5. This PDF resource will help you a lot.html 1.49KB
5. Thompson Sampling in Python - Step 2.mp4 8.42MB
5. Thompson Sampling in Python - Step 2.vtt 5.20KB
5. Upper Confidence Bound in Python - Step 2.mp4 35.44MB
5. Upper Confidence Bound in Python - Step 2.vtt 21.82KB
6.1 Machine_Learning_A-Z_New.zip.zip 228.44MB
6. Apriori in Python - Step 1.mp4 37.97MB
6. Apriori in Python - Step 1.vtt 24.86KB
6. Conclusion of Part 3 - Classification.html 3.75KB
6. Gradient Descent.mp4 18.54MB
6. Gradient Descent.vtt 12.26KB
6. Grid Search in R.mp4 35.54MB
6. Grid Search in R.vtt 18.26KB
6. HC in Python - Step 2.mp4 12.64MB
6. HC in Python - Step 2.vtt 8.57KB
6. Kernel SVM in Python.mp4 41.62MB
6. Kernel SVM in Python.vtt 24.98KB
6. K-Means Clustering in R.mp4 28.99MB
6. K-Means Clustering in R.vtt 17.34KB
6. Logistic Regression in Python - Step 4.mp4 10.38MB
6. Logistic Regression in Python - Step 4.vtt 6.37KB
6. Missing Data.mp4 32.16MB
6. Missing Data.vtt 19.43KB
6. Multiple Linear Regression Intuition - Step 4.mp4 4.51MB
6. Multiple Linear Regression Intuition - Step 4.vtt 3.17KB
6. Naive Bayes in Python.mp4 23.38MB
6. Naive Bayes in Python.vtt 12.22KB
6. Natural Language Processing in Python - Step 3.mp4 3.39MB
6. Natural Language Processing in Python - Step 3.vtt 3.39MB
6. PCA in R - Step 1.mp4 30.65MB
6. PCA in R - Step 1.vtt 16.36KB
6. Polynomial Regression in Python - Step 4.mp4 13.50MB
6. Polynomial Regression in Python - Step 4.vtt 13.52MB
6. Simple Linear Regression in Python - Step 2.mp4 18.75MB
6. Simple Linear Regression in Python - Step 2.vtt 11.12KB
6. Step 3 - Flattening.mp4 3.28MB
6. Step 3 - Flattening.vtt 2.28KB
6. The whole code folder of the course.html 1.02KB
6. Thompson Sampling in R - Step 1.mp4 40.93MB
6. Thompson Sampling in R - Step 1.vtt 24.31KB
6. Upper Confidence Bound in Python - Step 3.mp4 41.11MB
6. Upper Confidence Bound in Python - Step 3.vtt 23.38KB
7. Apriori in Python - Step 2.mp4 29.52MB
7. Apriori in Python - Step 2.vtt 20.11KB
7. Categorical Data.mp4 40.79MB
7. Categorical Data.vtt 23.86KB
7. HC in Python - Step 3.mp4 12.30MB
7. HC in Python - Step 3.vtt 6.95KB
7. Kernel SVM in R.mp4 40.45MB
7. Kernel SVM in R.vtt 22.66KB
7. K-Means Clustering.html 118B
7. Logistic Regression in Python - Step 5.mp4 42.55MB
7. Logistic Regression in Python - Step 5.vtt 26.48KB
7. Naive Bayes in R.mp4 37.31MB
7. Naive Bayes in R.vtt 19.45KB
7. Natural Language Processing in Python - Step 4.mp4 24.01MB
7. Natural Language Processing in Python - Step 4.vtt 15.17KB
7. PCA in R - Step 2.mp4 29.02MB
7. PCA in R - Step 2.vtt 14.64KB
7. Prerequisites What is the P-Value.html 676B
7. Python Regression Template.mp4 27.43MB
7. Python Regression Template.vtt 14.67KB
7. Simple Linear Regression in Python - Step 3.mp4 15.61MB
7. Simple Linear Regression in Python - Step 3.vtt 8.89KB
7. Step 4 - Full Connection.mp4 42.75MB
7. Step 4 - Full Connection.vtt 25.08KB
7. Stochastic Gradient Descent.mp4 16.83MB
7. Stochastic Gradient Descent.vtt 10.74KB
7. Thompson Sampling in R - Step 2.mp4 7.47MB
7. Thompson Sampling in R - Step 2.vtt 4.76KB
7. Updates on Udemy Reviews.mp4 52.92MB
7. Updates on Udemy Reviews.vtt 52.93MB
7. Upper Confidence Bound in Python - Step 4.mp4 9.13MB
7. Upper Confidence Bound in Python - Step 4.vtt 4.38KB
8. Apriori in Python - Step 3.mp4 26.96MB
8. Apriori in Python - Step 3.vtt 26.98MB
8. Backpropagation.mp4 10.92MB
8. Backpropagation.vtt 6.32KB
8. HC in Python - Step 4.mp4 12.02MB
8. HC in Python - Step 4.vtt 5.85KB
8. Installing Python and Anaconda (Mac, Linux & Windows).mp4 19.52MB
8. Installing Python and Anaconda (Mac, Linux & Windows).vtt 10.98KB
8. Multiple Linear Regression Intuition - Step 5.mp4 28.83MB
8. Multiple Linear Regression Intuition - Step 5.vtt 21.06KB
8. Natural Language Processing in Python - Step 5.mp4 14.91MB
8. Natural Language Processing in Python - Step 5.vtt 9.23KB
8. PCA in R - Step 3.mp4 36.73MB
8. PCA in R - Step 3.vtt 36.76MB
8. Polynomial Regression in R - Step 1.mp4 17.78MB
8. Polynomial Regression in R - Step 1.vtt 12.66KB
8. Python Classification Template.mp4 12.06MB
8. Python Classification Template.vtt 5.48KB
8. Simple Linear Regression in Python - Step 4.mp4 30.82MB
8. Simple Linear Regression in Python - Step 4.vtt 20.04KB
8. Summary.mp4 7.92MB
8. Summary.vtt 5.33KB
8. Upper Confidence Bound in R - Step 1.mp4 28.05MB
8. Upper Confidence Bound in R - Step 1.vtt 17.91KB
8. WARNING - Update.html 2.86KB
9. HC in Python - Step 5.mp4 8.39MB
9. HC in Python - Step 5.vtt 6.14KB
9. How to get the dataset.mp4 11.71MB
9. How to get the dataset.vtt 4.23KB
9. Logistic Regression in R - Step 1.mp4 12.59MB
9. Logistic Regression in R - Step 1.vtt 7.92KB
9. Multiple Linear Regression in Python - Step 1.mp4 39.56MB
9. Multiple Linear Regression in Python - Step 1.vtt 21.52KB
9. Natural Language Processing in Python - Step 6.mp4 6.49MB
9. Natural Language Processing in Python - Step 6.vtt 3.86KB
9. Polynomial Regression in R - Step 2.mp4 23.87MB
9. Polynomial Regression in R - Step 2.vtt 13.72KB
9. Simple Linear Regression in R - Step 1.mp4 9.54MB
9. Simple Linear Regression in R - Step 1.vtt 6.86KB
9. Softmax & Cross-Entropy.mp4 33.23MB
9. Softmax & Cross-Entropy.vtt 22.13KB
9. Splitting the Dataset into the Training set and Test set.mp4 39.03MB
9. Splitting the Dataset into the Training set and Test set.vtt 23.91KB
9. Update Recommended Anaconda Version.html 1.32KB
9. Upper Confidence Bound in R - Step 2.mp4 29.02MB
9. Upper Confidence Bound in R - Step 2.vtt 19.20KB
Distribution statistics by country
Israel (IL) 1
Total 1
IP List List of IP addresses which were distributed this torrent