Torrent Info
Title machlearning-001
Category
Size 5.26GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
01_Bayesian_Methods.mp4 20.48MB
01_Class_Information.mp4 25.27MB
01_Clustering_and_Dimensionality_Reduction.mp4 34.03MB
01_Decision_Trees.mp4 41.30MB
01_Learning_Theory.mp4 12.80MB
01_Model_Ensembles.mp4 13.35MB
01_Reverse-Engineering_the_Brain.mp4 52.70MB
01_Rules_vs._Decision_Trees.mp4 67.21MB
01_Support_Vector_Machines.mp4 30.82MB
01_The_K-Nearest_Neighbor_Algorithm.mp4 69.21MB
02_Bagging.mp4 38.00MB
02_Bayes_Theorem_and_MAP_Hypotheses.mp4 102.33MB
02_K-Means_Clustering.mp4 44.37MB
02_Learning_a_Set_of_Rules.mp4 50.41MB
02_Neural_Network_Driving_a_Car.mp4 46.67MB
02_No_Free_Lunch_Theorems.mp4 59.89MB
02_Perceptrons_as_Instance-Based_Learning.mp4 51.77MB
02_Theoretical_Guarantees_on_k-NN.mp4 43.24MB
02_What_Can_a_Decision_Tree_Represent.mp4 27.24MB
02_What_Is_Machine_Learning.mp4 38.85MB
03_Applications_of_Machine_Learning.mp4 39.90MB
03_Basic_Probability_Formulas.mp4 24.03MB
03_Boosting-_The_Basics.mp4 34.22MB
03_Distance-Weighted_k-NN.mp4 12.05MB
03_Estimating_Probabilities_from_Small_Samples.mp4 36.45MB
03_Growing_a_Decision_Tree.mp4 27.13MB
03_How_Neurons_Work.mp4 34.52MB
03_Kernels.mp4 67.50MB
03_Mixture_Models.mp4 53.02MB
03_Practical_Consequences_of_No_Free_Lunch.mp4 34.98MB
04_Accuracy_and_Information_Gain.mp4 86.19MB
04_Bias_and_Variance.mp4 77.17MB
04_Boosting-_The_Details.mp4 49.38MB
04_Key_Elements_of_Machine_Learning.mp4 76.56MB
04_Learning_Rules_for_Multiple_Classes.mp4 22.69MB
04_Learning_SVMs.mp4 64.76MB
04_MAP_Learning.mp4 57.72MB
04_Mixtures_of_Gaussians.mp4 20.75MB
04_The_Curse_of_Dimensionality.mp4 58.65MB
04_The_Perceptron.mp4 50.93MB
05_Bias-Variance_Decomposition_for_Squared_Loss.mp4 15.85MB
05_Constrained_Optimization.mp4 75.23MB
05_EM_Algorithm_for_Mixtures_of_Gaussians.mp4 43.26MB
05_Error-Correcting_Output_Coding.mp4 39.36MB
05_Feature_Selection_and_Weighting.mp4 47.79MB
05_First-Order_Rules.mp4 45.12MB
05_Learning_a_Real-Valued_Function.mp4 43.55MB
05_Learning_with_Non-Boolean_Features.mp4 25.36MB
05_Perceptron_Training.mp4 48.61MB
05_Types_of_Learning.mp4 61.34MB
06_Bayes_Optimal_Classifier_and_Gibbs_Classifier.mp4 40.40MB
06_General_Bias-Variance_Decomposition.mp4 43.90MB
06_Gradient_Descent.mp4 36.77MB
06_Learning_First-Order_Rules_Using_FOIL.mp4 97.29MB
06_Machine_Learning_in_Practice.mp4 46.47MB
06_Mixture_Models_vs._K-Means_vs._Bayesian_Networks.mp4 27.96MB
06_Optimization_with_Inequality_Constraints.mp4 52.86MB
06_Reducing_the_Computational_Cost_of_k-NN.mp4 44.76MB
06_Stacking.mp4 42.27MB
06_The_Parity_Problem.mp4 19.14MB
07_Avoiding_Overfitting_in_k-NN.mp4 26.17MB
07_Bias-Variance_Decomposition_for_Zero-One_Loss.mp4 25.60MB
07_Gradient_Descent_Continued.mp4 37.40MB
07_Hierarchical_Clustering.mp4 19.67MB
07_Induction_as_Inverted_Deduction.mp4 74.55MB
07_Learning_with_Many-Valued_Attributes.mp4 22.52MB
07_The_Naive_Bayes_Classifier.mp4 102.43MB
07_The_SMO_Algorithm.mp4 24.18MB
07_What_Is_Inductive_Learning.mp4 14.93MB
08_Bias_and_Variance_for_Other_Loss_Functions.mp4 15.83MB
08_Gradient_Descent_vs._Perceptron_Training.mp4 24.72MB
08_Handling_Noisy_Data_in_SVMs.mp4 55.10MB
08_Inverting_Propositional_Resolution.mp4 63.90MB
08_Learning_with_Missing_Values.mp4 37.86MB
08_Locally_Weighted_Regression.mp4 20.03MB
08_Principal_Components_Analysis.mp4 58.25MB
08_Text_Classification.mp4 42.98MB
08_When_Should_You_Use_Inductive_Learning.mp4 27.91MB
09_Bayesian_Networks.mp4 93.07MB
09_Generalization_Bounds_for_SVMs.mp4 41.28MB
09_Inverting_First-Order_Resolution.mp4 86.69MB
09_Multidimensional_Scaling.mp4 28.35MB
09_PAC_Learning.mp4 40.03MB
09_Radial_Basis_Function_Networks.mp4 13.34MB
09_Stochastic_Gradient_Descent.mp4 18.20MB
09_The_Essence_of_Inductive_Learning.mp4 99.08MB
09_The_Overfitting_Problem.mp4 48.33MB
10_A_Framework_for_Studying_Inductive_Learning.mp4 94.53MB
10_Case-Based_Reasoning.mp4 16.04MB
10_Decision_Tree_Pruning.mp4 79.50MB
10_How_Many_Examples_Are_Enough.mp4 54.99MB
10_Inference_in_Bayesian_Networks.mp4 15.43MB
10_Multilayer_Perceptrons.mp4 61.83MB
10_Nonlinear_Dimensionality_Reduction.mp4 45.61MB
11_Backpropagation.mp4 81.95MB
11_Bayesian_Network_Review.mp4 16.45MB
11_Examples_and_Definition_of_PAC_Learning.mp4 17.34MB
11_Lazy_vs._Eager_Learning.mp4 11.32MB
11_Post-Pruning_Trees_to_Rules.mp4 94.41MB
12_Agnostic_Learning.mp4 45.76MB
12_Collaborative_Filtering.mp4 70.53MB
12_Issues_in_Backpropagation.mp4 100.65MB
12_Learning_Bayesian_Networks.mp4 15.38MB
12_Scaling_Up_Decision_Tree_Learning.mp4 27.95MB
13_Learning_Hidden_Layer_Representations.mp4 57.15MB
13_The_EM_Algorithm.mp4 53.92MB
13_VC_Dimension.mp4 39.97MB
14_Example_of_EM.mp4 55.26MB
14_Expressiveness_of_Neural_Networks.mp4 29.44MB
14_VC_Dimension_of_Hyperplanes.mp4 39.28MB
15_Avoiding_Overfitting_in_Neural_Networks.mp4 37.83MB
15_Learning_Bayesian_Network_Structure.mp4 71.49MB
15_Sample_Complexity_from_VC_Dimension.mp4 7.72MB
16_The_Structural_EM_Algorithm.mp4 286.36MB
entered_login.html 1.31MB
Distribution statistics by country
France (FR) 1
Bosnia and Herzegovina (BA) 1
Czechia (CZ) 1
India (IN) 1
United States (US) 1
Netherlands (NL) 1
Total 6
IP List List of IP addresses which were distributed this torrent