Torrent Info
Title [GigaCourse.Com] Udemy - Master statistics & machine learning - intuition, math, code
Category
Size 12.84GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.Me].url 122B
[CourseClub.ME].url 122B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
[GigaCourse.Com].url 49B
001 [Important] Getting the most out of this course_en.srt 6.08KB
001 [Important] Getting the most out of this course_en.vtt 5.36KB
001 [Important] Getting the most out of this course.mp4 38.26MB
001 About deep learning.html 619B
001 ANOVA intro, part1_en.srt 26.20KB
001 ANOVA intro, part1_en.vtt 22.63KB
001 ANOVA intro, part1.mp4 137.72MB
001 Bar plots_en.srt 17.04KB
001 Bar plots_en.vtt 15.28KB
001 Bar plots.mp4 36.83MB
001 Descriptive vs. inferential statistics_en.srt 6.38KB
001 Descriptive vs. inferential statistics_en.vtt 5.58KB
001 Descriptive vs. inferential statistics.mp4 21.48MB
001 Download materials for the entire course__en.srt 5.42KB
001 Download materials for the entire course__en.vtt 4.77KB
001 Download materials for the entire course_.mp4 14.46MB
001 Garbage in, garbage out (GIGO)_en.srt 5.69KB
001 Garbage in, garbage out (GIGO)_en.vtt 5.00KB
001 Garbage in, garbage out (GIGO).mp4 11.55MB
001 Introduction to GLM _ regression_en.srt 29.73KB
001 Introduction to GLM _ regression_en.vtt 25.51KB
001 Introduction to GLM _ regression.mp4 61.97MB
001 Is _data_ singular or plural________en.srt 2.33KB
001 Is _data_ singular or plural________en.vtt 2.02KB
001 Is _data_ singular or plural_______.mp4 10.92MB
001 IVs, DVs, models, and other stats lingo_en.srt 24.30KB
001 IVs, DVs, models, and other stats lingo_en.vtt 20.93KB
001 IVs, DVs, models, and other stats lingo.mp4 91.14MB
001 K-means clustering_en.srt 21.01KB
001 K-means clustering_en.vtt 18.08KB
001 K-means clustering.mp4 54.29MB
001 Motivation and description of correlation_en.srt 27.37KB
001 Motivation and description of correlation_en.vtt 23.58KB
001 Motivation and description of correlation.mp4 118.43MB
001 Note about the code for this section.html 135B
001 Purpose and interpretation of the t-test_en.srt 18.92KB
001 Purpose and interpretation of the t-test_en.vtt 16.41KB
001 Purpose and interpretation of the t-test.mp4 32.16MB
001 Should you memorize statistical formulas__en.srt 4.17KB
001 Should you memorize statistical formulas__en.vtt 3.69KB
001 Should you memorize statistical formulas_.mp4 28.00MB
001 The two perspectives of the world_en.srt 8.71KB
001 The two perspectives of the world_en.vtt 7.52KB
001 The two perspectives of the world.mp4 13.91MB
001 What are confidence intervals and why do we need them__en.srt 13.12KB
001 What are confidence intervals and why do we need them__en.vtt 11.33KB
001 What are confidence intervals and why do we need them_.mp4 29.83MB
001 What is probability__en.srt 17.94KB
001 What is probability__en.vtt 15.49KB
001 What is probability_.mp4 41.11MB
001 What is statistical power and why is it important__en.srt 14.33KB
001 What is statistical power and why is it important__en.vtt 12.50KB
001 What is statistical power and why is it important_.mp4 39.53MB
002 About using MATLAB or Python_en.srt 5.93KB
002 About using MATLAB or Python_en.vtt 5.17KB
002 About using MATLAB or Python.mp4 27.11MB
002 Accuracy, precision, resolution_en.srt 11.39KB
002 Accuracy, precision, resolution_en.vtt 9.81KB
002 Accuracy, precision, resolution.mp4 25.42MB
002 ANOVA intro, part 2_en.srt 28.45KB
002 ANOVA intro, part 2_en.vtt 24.57KB
002 ANOVA intro, part 2.mp4 84.25MB
002 Arithmetic and exponents_en.srt 5.63KB
002 Arithmetic and exponents_en.vtt 4.94KB
002 Arithmetic and exponents.mp4 7.55MB
002 Bonus content.html 3.64KB
002 Code_ bar plots_en.srt 25.39KB
002 Code_ bar plots_en.vtt 22.66KB
002 Code_ bar plots.mp4 100.03MB
002 Code_ k-means clustering_en.srt 34.34KB
002 Code_ k-means clustering_en.vtt 29.39KB
002 Code_ k-means clustering.mp4 230.34MB
002 Computing confidence intervals via formula_en.srt 9.42KB
002 Computing confidence intervals via formula_en.vtt 8.22KB
002 Computing confidence intervals via formula.mp4 17.33MB
002 Covariance and correlation_ formulas_en.srt 20.80KB
002 Covariance and correlation_ formulas_en.vtt 17.86KB
002 Covariance and correlation_ formulas.mp4 41.85MB
002 d-prime_en.srt 19.21KB
002 d-prime_en.vtt 16.45KB
002 d-prime.mp4 34.14MB
002 Estimating statistical power and sample size_en.srt 16.57KB
002 Estimating statistical power and sample size_en.vtt 14.35KB
002 Estimating statistical power and sample size.mp4 36.16MB
002 Introduction_en.srt 6.23KB
002 Introduction_en.vtt 5.44KB
002 Introduction.mp4 53.02MB
002 Least-squares solution to the GLM_en.srt 14.33KB
002 Least-squares solution to the GLM_en.vtt 12.35KB
002 Least-squares solution to the GLM.mp4 41.41MB
002 One-sample t-test_en.srt 11.59KB
002 One-sample t-test_en.vtt 10.04KB
002 One-sample t-test.mp4 53.95MB
002 Probability vs. proportion_en.srt 14.14KB
002 Probability vs. proportion_en.vtt 12.13KB
002 Probability vs. proportion.mp4 37.52MB
002 What is an hypothesis and how do you specify one__en.srt 23.28KB
002 What is an hypothesis and how do you specify one__en.vtt 19.71KB
002 What is an hypothesis and how do you specify one_.mp4 49.12MB
002 Where do data come from and what do they mean__en.srt 8.40KB
002 Where do data come from and what do they mean__en.vtt 7.29KB
002 Where do data come from and what do they mean_.mp4 35.54MB
002 Z-score standardization_en.srt 14.29KB
002 Z-score standardization_en.vtt 12.30KB
002 Z-score standardization.mp4 36.23MB
003 _Unsupervised learning__ K-means and normalization_en.srt 2.48KB
003 _Unsupervised learning__ K-means and normalization_en.vtt 2.19KB
003 _Unsupervised learning__ K-means and normalization.mp4 12.91MB
003 Box-and-whisker plots_en.srt 7.82KB
003 Box-and-whisker plots_en.vtt 6.79KB
003 Box-and-whisker plots.mp4 11.12MB
003 Code_ compute confidence intervals by formula_en.srt 25.68KB
003 Code_ compute confidence intervals by formula_en.vtt 22.06KB
003 Code_ compute confidence intervals by formula.mp4 94.29MB
003 Code_ correlation coefficient_en.srt 40.44KB
003 Code_ correlation coefficient_en.vtt 34.65KB
003 Code_ correlation coefficient.mp4 214.14MB
003 Code_ d-prime_en.srt 21.85KB
003 Code_ d-prime_en.vtt 18.77KB
003 Code_ d-prime.mp4 69.50MB
003 Code_ One-sample t-test_en.srt 31.24KB
003 Code_ One-sample t-test_en.vtt 26.62KB
003 Code_ One-sample t-test.mp4 157.96MB
003 Code_ z-score_en.srt 19.26KB
003 Code_ z-score_en.vtt 16.61KB
003 Code_ z-score.mp4 66.77MB
003 Compute power and sample size using G_Power_en.srt 6.82KB
003 Compute power and sample size using G_Power_en.vtt 5.80KB
003 Compute power and sample size using G_Power.mp4 31.20MB
003 Computing probabilities_en.srt 15.15KB
003 Computing probabilities_en.vtt 13.08KB
003 Computing probabilities.mp4 37.52MB
003 Data distributions_en.srt 16.76KB
003 Data distributions_en.vtt 14.52KB
003 Data distributions.mp4 31.95MB
003 Evaluating regression models_ R2 and F_en.srt 23.82KB
003 Evaluating regression models_ R2 and F_en.vtt 20.49KB
003 Evaluating regression models_ R2 and F.mp4 38.06MB
003 MATLAB_ Import and clean the marriage data_en.srt 23.57KB
003 MATLAB_ Import and clean the marriage data_en.vtt 20.52KB
003 MATLAB_ Import and clean the marriage data.mp4 201.29MB
003 Sample distributions under null and alternative hypotheses_en.srt 14.68KB
003 Sample distributions under null and alternative hypotheses_en.vtt 12.79KB
003 Sample distributions under null and alternative hypotheses.mp4 43.75MB
003 Scientific notation_en.srt 8.72KB
003 Scientific notation_en.vtt 7.48KB
003 Scientific notation.mp4 12.87MB
003 Statistics guessing game__en.srt 13.33KB
003 Statistics guessing game__en.vtt 11.52KB
003 Statistics guessing game_.mp4 48.39MB
003 Sum of squares_en.srt 25.60KB
003 Sum of squares_en.vtt 22.32KB
003 Sum of squares.mp4 45.88MB
003 Types of data_ categorical, numerical, etc_en.srt 20.93KB
003 Types of data_ categorical, numerical, etc_en.vtt 18.09KB
003 Types of data_ categorical, numerical, etc.mp4 59.37MB
004 _Unsupervised learning__ K-means on a Gauss blur_en.srt 2.00KB
004 _Unsupervised learning__ K-means on a Gauss blur_en.vtt 1.75KB
004 _Unsupervised learning__ K-means on a Gauss blur.mp4 7.94MB
004 _Unsupervised learning__ The role of variance_en.srt 4.11KB
004 _Unsupervised learning__ The role of variance_en.vtt 3.58KB
004 _Unsupervised learning__ The role of variance.mp4 28.65MB
004 Code_ box plots_en.srt 12.75KB
004 Code_ box plots_en.vtt 10.92KB
004 Code_ box plots.mp4 83.65MB
004 Code_ compute probabilities_en.srt 22.04KB
004 Code_ compute probabilities_en.vtt 18.88KB
004 Code_ compute probabilities.mp4 148.40MB
004 Code_ data from different distributions_en.srt 45.95KB
004 Code_ data from different distributions_en.vtt 39.47KB
004 Code_ data from different distributions.mp4 303.11MB
004 Code_ representing types of data on computers_en.srt 13.09KB
004 Code_ representing types of data on computers_en.vtt 11.15KB
004 Code_ representing types of data on computers.mp4 47.83MB
004 Code_ Simulate data with specified correlation_en.srt 20.03KB
004 Code_ Simulate data with specified correlation_en.vtt 17.33KB
004 Code_ Simulate data with specified correlation.mp4 70.12MB
004 Confidence intervals via bootstrapping (resampling)_en.srt 12.83KB
004 Confidence intervals via bootstrapping (resampling)_en.vtt 11.18KB
004 Confidence intervals via bootstrapping (resampling).mp4 54.27MB
004 MATLAB_ Import the divorce data_en.srt 12.31KB
004 MATLAB_ Import the divorce data_en.vtt 10.65KB
004 MATLAB_ Import the divorce data.mp4 96.29MB
004 Min-max scaling_en.srt 7.23KB
004 Min-max scaling_en.vtt 6.30KB
004 Min-max scaling.mp4 11.73MB
004 P-values_ definition, tails, and misinterpretations_en.srt 25.43KB
004 P-values_ definition, tails, and misinterpretations_en.vtt 22.25KB
004 P-values_ definition, tails, and misinterpretations.mp4 106.47MB
004 Response bias_en.srt 12.25KB
004 Response bias_en.vtt 10.56KB
004 Response bias.mp4 21.82MB
004 Simple regression_en.srt 19.71KB
004 Simple regression_en.vtt 16.98KB
004 Simple regression.mp4 36.77MB
004 Summation notation_en.srt 6.00KB
004 Summation notation_en.vtt 5.20KB
004 Summation notation.mp4 7.73MB
004 The F-test and the ANOVA table_en.srt 10.47KB
004 The F-test and the ANOVA table_en.vtt 9.18KB
004 The F-test and the ANOVA table.mp4 19.90MB
004 Using the Q&A forum_en.srt 8.13KB
004 Using the Q&A forum_en.vtt 7.06KB
004 Using the Q&A forum.mp4 24.36MB
005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.srt 3.74KB
005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.vtt 3.26KB
005 _Unsupervised learning__ Boxplots of normal and uniform noise.mp4 8.24MB
005 _Unsupervised learning__ histograms of distributions_en.srt 3.06KB
005 _Unsupervised learning__ histograms of distributions_en.vtt 2.63KB
005 _Unsupervised learning__ histograms of distributions.mp4 10.18MB
005 (optional) Entering time-stamped notes in the Udemy video player_en.srt 3.10KB
005 (optional) Entering time-stamped notes in the Udemy video player_en.vtt 2.68KB
005 (optional) Entering time-stamped notes in the Udemy video player.mp4 7.06MB
005 Absolute value_en.srt 4.18KB
005 Absolute value_en.vtt 3.68KB
005 Absolute value.mp4 6.92MB
005 Clustering via dbscan_en.srt 21.67KB
005 Clustering via dbscan_en.vtt 18.65KB
005 Clustering via dbscan.mp4 100.30MB
005 Code_ bootstrapping confidence intervals_en.srt 21.66KB
005 Code_ bootstrapping confidence intervals_en.vtt 18.41KB
005 Code_ bootstrapping confidence intervals.mp4 136.71MB
005 Code_ min-max scaling_en.srt 12.56KB
005 Code_ min-max scaling_en.vtt 10.75KB
005 Code_ min-max scaling.mp4 40.43MB
005 Code_ Response bias_en.srt 6.35KB
005 Code_ Response bias_en.vtt 5.49KB
005 Code_ Response bias.mp4 22.81MB
005 Code_ simple regression_en.srt 13.43KB
005 Code_ simple regression_en.vtt 11.54KB
005 Code_ simple regression.mp4 52.29MB
005 Correlation matrix_en.srt 13.60KB
005 Correlation matrix_en.vtt 11.72KB
005 Correlation matrix.mp4 30.96MB
005 MATLAB_ More data visualizations_en.srt 9.26KB
005 MATLAB_ More data visualizations_en.vtt 8.16KB
005 MATLAB_ More data visualizations.mp4 34.32MB
005 Probability and odds_en.srt 6.94KB
005 Probability and odds_en.vtt 6.01KB
005 Probability and odds.mp4 12.01MB
005 P-z combinations that you should memorize_en.srt 9.04KB
005 P-z combinations that you should memorize_en.vtt 7.89KB
005 P-z combinations that you should memorize.mp4 17.32MB
005 Sample vs. population data_en.srt 17.21KB
005 Sample vs. population data_en.vtt 14.93KB
005 Sample vs. population data.mp4 37.06MB
005 The omnibus F-test and post-hoc comparisons_en.srt 18.85KB
005 The omnibus F-test and post-hoc comparisons_en.vtt 16.24KB
005 The omnibus F-test and post-hoc comparisons.mp4 63.36MB
005 Two-samples t-test_en.srt 18.97KB
005 Two-samples t-test_en.vtt 16.40KB
005 Two-samples t-test.mp4 93.81MB
006 _Unsupervised learning__ Compute R2 and F_en.srt 1.44KB
006 _Unsupervised learning__ Compute R2 and F_en.vtt 1.28KB
006 _Unsupervised learning__ Compute R2 and F.mp4 5.38MB
006 _Unsupervised learning__ Confidence intervals for variance_en.srt 1.89KB
006 _Unsupervised learning__ Confidence intervals for variance_en.vtt 1.68KB
006 _Unsupervised learning__ Confidence intervals for variance.mp4 8.54MB
006 _Unsupervised learning__ Invert the min-max scaling_en.srt 3.63KB
006 _Unsupervised learning__ Invert the min-max scaling_en.vtt 3.17KB
006 _Unsupervised learning__ Invert the min-max scaling.mp4 6.79MB
006 _Unsupervised learning__ probabilities of odds-space_en.srt 3.14KB
006 _Unsupervised learning__ probabilities of odds-space_en.vtt 2.76KB
006 _Unsupervised learning__ probabilities of odds-space.mp4 5.92MB
006 Code_ correlation matrix_en.srt 31.87KB
006 Code_ correlation matrix_en.vtt 27.17KB
006 Code_ correlation matrix.mp4 282.48MB
006 Code_ dbscan_en.srt 49.38KB
006 Code_ dbscan_en.vtt 42.20KB
006 Code_ dbscan.mp4 288.12MB
006 Code_ Two-samples t-test_en.srt 32.17KB
006 Code_ Two-samples t-test_en.vtt 27.56KB
006 Code_ Two-samples t-test.mp4 211.35MB
006 Degrees of freedom_en.srt 2.60KB
006 Degrees of freedom_en.vtt 16.00KB
006 Degrees of freedom.mp4 32.90MB
006 F-score_en.srt 33.08KB
006 F-score_en.vtt 28.75KB
006 F-score.mp4 107.25MB
006 Histograms_en.srt 15.81KB
006 Histograms_en.vtt 13.70KB
006 Histograms.mp4 43.73MB
006 MATLAB_ Inferential statistics_en.srt 15.30KB
006 MATLAB_ Inferential statistics_en.vtt 13.35KB
006 MATLAB_ Inferential statistics.mp4 113.52MB
006 Natural exponent and logarithm_en.srt 8.05KB
006 Natural exponent and logarithm_en.vtt 7.00KB
006 Natural exponent and logarithm.mp4 12.18MB
006 Samples, case reports, and anecdotes_en.srt 7.68KB
006 Samples, case reports, and anecdotes_en.vtt 6.73KB
006 Samples, case reports, and anecdotes.mp4 17.79MB
006 The beauty and simplicity of Normal_en.srt 7.64KB
006 The beauty and simplicity of Normal_en.vtt 6.72KB
006 The beauty and simplicity of Normal.mp4 10.23MB
006 The two-way ANOVA_en.srt 29.37KB
006 The two-way ANOVA_en.vtt 25.18KB
006 The two-way ANOVA.mp4 104.39MB
007 _Unsupervised learning__ average correlation matrices_en.srt 4.07KB
007 _Unsupervised learning__ average correlation matrices_en.vtt 3.57KB
007 _Unsupervised learning__ average correlation matrices.mp4 18.49MB
007 _Unsupervised learning__ dbscan vs. k-means_en.srt 4.43KB
007 _Unsupervised learning__ dbscan vs. k-means_en.vtt 3.88KB
007 _Unsupervised learning__ dbscan vs. k-means.mp4 19.94MB
007 _Unsupervised learning__ Importance of N for t-test_en.srt 6.85KB
007 _Unsupervised learning__ Importance of N for t-test_en.vtt 5.94KB
007 _Unsupervised learning__ Importance of N for t-test.mp4 16.77MB
007 Code_ histograms_en.srt 24.24KB
007 Code_ histograms_en.vtt 20.80KB
007 Code_ histograms.mp4 133.49MB
007 Measures of central tendency (mean)_en.srt 18.99KB
007 Measures of central tendency (mean)_en.vtt 16.34KB
007 Measures of central tendency (mean).mp4 38.70MB
007 Misconceptions about confidence intervals_en.srt 9.08KB
007 Misconceptions about confidence intervals_en.vtt 7.91KB
007 Misconceptions about confidence intervals.mp4 18.60MB
007 Multiple regression_en.srt 19.12KB
007 Multiple regression_en.vtt 16.47KB
007 Multiple regression.mp4 45.14MB
007 One-way ANOVA example_en.srt 20.60KB
007 One-way ANOVA example_en.vtt 17.68KB
007 One-way ANOVA example.mp4 44.32MB
007 Probability mass vs. density_en.srt 18.42KB
007 Probability mass vs. density_en.vtt 15.95KB
007 Probability mass vs. density.mp4 134.14MB
007 Python_ Import and clean the marriage data_en.srt 29.28KB
007 Python_ Import and clean the marriage data_en.vtt 25.48KB
007 Python_ Import and clean the marriage data.mp4 249.82MB
007 Receiver operating characteristics (ROC)_en.srt 10.95KB
007 Receiver operating characteristics (ROC)_en.vtt 9.58KB
007 Receiver operating characteristics (ROC).mp4 64.37MB
007 The ethics of making up data_en.srt 10.29KB
007 The ethics of making up data_en.vtt 8.90KB
007 The ethics of making up data.mp4 19.65MB
007 The logistic function_en.srt 13.12KB
007 The logistic function_en.vtt 11.28KB
007 The logistic function.mp4 17.90MB
007 Type 1 and Type 2 errors_en.srt 22.20KB
007 Type 1 and Type 2 errors_en.vtt 19.01KB
007 Type 1 and Type 2 errors.mp4 45.90MB
007 What are outliers and why are they dangerous__en.srt 21.54KB
007 What are outliers and why are they dangerous__en.vtt 18.52KB
007 What are outliers and why are they dangerous_.mp4 43.00MB
008 _Unsupervised learning__ correlation to covariance matrix_en.srt 5.81KB
008 _Unsupervised learning__ correlation to covariance matrix_en.vtt 5.12KB
008 _Unsupervised learning__ correlation to covariance matrix.mp4 10.13MB
008 _Unsupervised learning__ Histogram proportion_en.srt 3.40KB
008 _Unsupervised learning__ Histogram proportion_en.vtt 2.98KB
008 _Unsupervised learning__ Histogram proportion.mp4 11.79MB
008 Code_ compute probability mass functions_en.srt 16.01KB
008 Code_ compute probability mass functions_en.vtt 14.03KB
008 Code_ compute probability mass functions.mp4 66.17MB
008 Code_ One-way ANOVA (independent samples)_en.srt 25.72KB
008 Code_ One-way ANOVA (independent samples)_en.vtt 21.93KB
008 Code_ One-way ANOVA (independent samples).mp4 172.72MB
008 Code_ ROC curves_en.srt 11.67KB
008 Code_ ROC curves_en.vtt 10.14KB
008 Code_ ROC curves.mp4 54.62MB
008 K-nearest neighbor classification_en.srt 8.99KB
008 K-nearest neighbor classification_en.vtt 7.84KB
008 K-nearest neighbor classification.mp4 12.47MB
008 Measures of central tendency (median, mode)_en.srt 18.21KB
008 Measures of central tendency (median, mode)_en.vtt 15.71KB
008 Measures of central tendency (median, mode).mp4 34.26MB
008 Parametric vs. non-parametric tests_en.srt 12.87KB
008 Parametric vs. non-parametric tests_en.vtt 11.30KB
008 Parametric vs. non-parametric tests.mp4 87.45MB
008 Python_ Import the divorce data_en.srt 18.53KB
008 Python_ Import the divorce data_en.vtt 16.08KB
008 Python_ Import the divorce data.mp4 137.14MB
008 Rank and tied-rank_en.srt 9.55KB
008 Rank and tied-rank_en.vtt 8.22KB
008 Rank and tied-rank.mp4 12.92MB
008 Removing outliers_ z-score method_en.srt 14.14KB
008 Removing outliers_ z-score method_en.vtt 12.21KB
008 Removing outliers_ z-score method.mp4 33.51MB
008 Standardizing regression coefficients_en.srt 18.34KB
008 Standardizing regression coefficients_en.vtt 15.73KB
008 Standardizing regression coefficients.mp4 75.19MB
008 Wilcoxon signed-rank (nonparametric t-test)_en.srt 10.43KB
008 Wilcoxon signed-rank (nonparametric t-test)_en.vtt 9.09KB
008 Wilcoxon signed-rank (nonparametric t-test).mp4 25.98MB
009 _Unsupervised learning__ Make this plot look nicer__en.srt 2.35KB
009 _Unsupervised learning__ Make this plot look nicer__en.vtt 2.06KB
009 _Unsupervised learning__ Make this plot look nicer_.mp4 11.50MB
009 Code_ computing central tendency_en.srt 20.14KB
009 Code_ computing central tendency_en.vtt 17.41KB
009 Code_ computing central tendency.mp4 66.60MB
009 Code_ KNN_en.srt 18.21KB
009 Code_ KNN_en.vtt 15.49KB
009 Code_ KNN.mp4 108.34MB
009 Code_ Multiple regression_en.srt 27.91KB
009 Code_ Multiple regression_en.vtt 23.90KB
009 Code_ Multiple regression.mp4 170.95MB
009 Code_ One-way repeated-measures ANOVA_en.srt 18.38KB
009 Code_ One-way repeated-measures ANOVA_en.vtt 15.87KB
009 Code_ One-way repeated-measures ANOVA.mp4 73.10MB
009 Code_ Signed-rank test_en.srt 26.90KB
009 Code_ Signed-rank test_en.vtt 23.02KB
009 Code_ Signed-rank test.mp4 161.85MB
009 Cumulative distribution functions_en.srt 20.37KB
009 Cumulative distribution functions_en.vtt 17.73KB
009 Cumulative distribution functions.mp4 45.41MB
009 Multiple comparisons and Bonferroni correction_en.srt 12.50KB
009 Multiple comparisons and Bonferroni correction_en.vtt 10.79KB
009 Multiple comparisons and Bonferroni correction.mp4 29.56MB
009 Partial correlation_en.srt 15.42KB
009 Partial correlation_en.vtt 13.36KB
009 Partial correlation.mp4 59.34MB
009 Pie charts_en.srt 8.47KB
009 Pie charts_en.vtt 7.33KB
009 Pie charts.mp4 16.53MB
009 Python_ Inferential statistics_en.srt 16.08KB
009 Python_ Inferential statistics_en.vtt 14.05KB
009 Python_ Inferential statistics.mp4 115.54MB
009 The modified z-score method_en.srt 5.90KB
009 The modified z-score method_en.vtt 5.12KB
009 The modified z-score method.mp4 9.62MB
010 _Unsupervised learning__ central tendencies with outliers_en.srt 4.31KB
010 _Unsupervised learning__ central tendencies with outliers_en.vtt 3.78KB
010 _Unsupervised learning__ central tendencies with outliers.mp4 16.74MB
010 Code_ cdfs and pdfs_en.srt 14.49KB
010 Code_ cdfs and pdfs_en.vtt 12.56KB
010 Code_ cdfs and pdfs.mp4 95.94MB
010 Code_ partial correlation_en.srt 29.41KB
010 Code_ partial correlation_en.vtt 25.23KB
010 Code_ partial correlation.mp4 108.27MB
010 Code_ pie charts_en.srt 19.38KB
010 Code_ pie charts_en.vtt 16.66KB
010 Code_ pie charts.mp4 78.92MB
010 Code_ z-score for outlier removal_en.srt 33.64KB
010 Code_ z-score for outlier removal_en.vtt 28.78KB
010 Code_ z-score for outlier removal.mp4 136.89MB
010 Mann-Whitney U test (nonparametric t-test)_en.srt 8.84KB
010 Mann-Whitney U test (nonparametric t-test)_en.vtt 7.66KB
010 Mann-Whitney U test (nonparametric t-test).mp4 20.32MB
010 Polynomial regression models_en.srt 12.22KB
010 Polynomial regression models_en.vtt 10.65KB
010 Polynomial regression models.mp4 48.15MB
010 Principal components analysis (PCA)_en.srt 23.28KB
010 Principal components analysis (PCA)_en.vtt 20.26KB
010 Principal components analysis (PCA).mp4 42.56MB
010 Statistical vs. theoretical vs. clinical significance_en.srt 9.98KB
010 Statistical vs. theoretical vs. clinical significance_en.vtt 8.64KB
010 Statistical vs. theoretical vs. clinical significance.mp4 19.08MB
010 Take-home messages_en.srt 8.72KB
010 Take-home messages_en.vtt 7.60KB
010 Take-home messages.mp4 43.80MB
010 Two-way ANOVA example_en.srt 16.08KB
010 Two-way ANOVA example_en.vtt 14.00KB
010 Two-way ANOVA example.mp4 35.95MB
011 _Unsupervised learning__ cdf's for various distributions_en.srt 3.32KB
011 _Unsupervised learning__ cdf's for various distributions_en.vtt 2.94KB
011 _Unsupervised learning__ cdf's for various distributions.mp4 9.31MB
011 _Unsupervised learning__ z vs. modified-z_en.srt 3.84KB
011 _Unsupervised learning__ z vs. modified-z_en.vtt 3.36KB
011 _Unsupervised learning__ z vs. modified-z.mp4 9.02MB
011 Code_ Mann-Whitney U test_en.srt 7.75KB
011 Code_ Mann-Whitney U test_en.vtt 6.70KB
011 Code_ Mann-Whitney U test.mp4 52.05MB
011 Code_ PCA_en.srt 26.52KB
011 Code_ PCA_en.vtt 22.60KB
011 Code_ PCA.mp4 175.10MB
011 Code_ polynomial modeling_en.srt 22.44KB
011 Code_ polynomial modeling_en.vtt 19.30KB
011 Code_ polynomial modeling.mp4 129.08MB
011 Code_ Two-way mixed ANOVA_en.srt 21.44KB
011 Code_ Two-way mixed ANOVA_en.vtt 18.37KB
011 Code_ Two-way mixed ANOVA.mp4 114.16MB
011 Cross-validation_en.srt 16.44KB
011 Cross-validation_en.vtt 14.32KB
011 Cross-validation.mp4 28.25MB
011 Measures of dispersion (variance, standard deviation)_en.srt 26.26KB
011 Measures of dispersion (variance, standard deviation)_en.vtt 22.56KB
011 Measures of dispersion (variance, standard deviation).mp4 54.12MB
011 The problem with Pearson_en.srt 9.89KB
011 The problem with Pearson_en.vtt 8.65KB
011 The problem with Pearson.mp4 16.57MB
011 When to use lines instead of bars_en.srt 8.62KB
011 When to use lines instead of bars_en.vtt 7.47KB
011 When to use lines instead of bars.mp4 17.98MB
012 _Unsupervised learning__ K-means on PC data_en.srt 2.21KB
012 _Unsupervised learning__ K-means on PC data_en.vtt 1.95KB
012 _Unsupervised learning__ K-means on PC data.mp4 11.52MB
012 _Unsupervised learning__ Polynomial design matrix_en.srt 1.11KB
012 _Unsupervised learning__ Polynomial design matrix_en.vtt 1010B
012 _Unsupervised learning__ Polynomial design matrix.mp4 4.74MB
012 Code_ Computing dispersion_en.srt 37.23KB
012 Code_ Computing dispersion_en.vtt 32.31KB
012 Code_ Computing dispersion.mp4 266.09MB
012 Creating sample estimate distributions_en.srt 27.73KB
012 Creating sample estimate distributions_en.vtt 23.83KB
012 Creating sample estimate distributions.mp4 124.85MB
012 Linear vs. logarithmic axis scaling_en.srt 12.48KB
012 Linear vs. logarithmic axis scaling_en.vtt 10.79KB
012 Linear vs. logarithmic axis scaling.mp4 25.64MB
012 Multivariate outlier detection_en.srt 14.35KB
012 Multivariate outlier detection_en.vtt 12.28KB
012 Multivariate outlier detection.mp4 25.05MB
012 Nonparametric correlation_ Spearman rank_en.srt 10.73KB
012 Nonparametric correlation_ Spearman rank_en.vtt 9.30KB
012 Nonparametric correlation_ Spearman rank.mp4 23.72MB
012 Permutation testing for t-test significance_en.srt 16.36KB
012 Permutation testing for t-test significance_en.vtt 14.20KB
012 Permutation testing for t-test significance.mp4 63.48MB
012 Statistical significance vs. classification accuracy_en.srt 17.02KB
012 Statistical significance vs. classification accuracy_en.vtt 14.68KB
012 Statistical significance vs. classification accuracy.mp4 42.50MB
013 Code_ Euclidean distance for outlier removal_en.srt 12.77KB
013 Code_ Euclidean distance for outlier removal_en.vtt 11.04KB
013 Code_ Euclidean distance for outlier removal.mp4 43.72MB
013 Code_ line plots_en.srt 10.87KB
013 Code_ line plots_en.vtt 9.41KB
013 Code_ line plots.mp4 37.29MB
013 Code_ permutation testing_en.srt 37.10KB
013 Code_ permutation testing_en.vtt 31.77KB
013 Code_ permutation testing.mp4 240.90MB
013 Fisher-Z transformation for correlations_en.srt 9.87KB
013 Fisher-Z transformation for correlations_en.vtt 8.63KB
013 Fisher-Z transformation for correlations.mp4 28.48MB
013 Independent components analysis (ICA)_en.srt 17.25KB
013 Independent components analysis (ICA)_en.vtt 15.07KB
013 Independent components analysis (ICA).mp4 45.52MB
013 Interquartile range (IQR)_en.srt 7.01KB
013 Interquartile range (IQR)_en.vtt 6.10KB
013 Interquartile range (IQR).mp4 9.84MB
013 Logistic regression_en.srt 25.46KB
013 Logistic regression_en.vtt 21.81KB
013 Logistic regression.mp4 52.70MB
013 Monte Carlo sampling_en.srt 3.82KB
013 Monte Carlo sampling_en.vtt 3.35KB
013 Monte Carlo sampling.mp4 8.83MB
014 _Unsupervised learning__ How many permutations__en.srt 7.74KB
014 _Unsupervised learning__ How many permutations__en.vtt 6.73KB
014 _Unsupervised learning__ How many permutations_.mp4 32.50MB
014 _Unsupervised learning__ log-scaled plots_en.srt 2.47KB
014 _Unsupervised learning__ log-scaled plots_en.vtt 2.14KB
014 _Unsupervised learning__ log-scaled plots.mp4 3.73MB
014 Code_ ICA_en.srt 18.44KB
014 Code_ ICA_en.vtt 15.90KB
014 Code_ ICA.mp4 73.36MB
014 Code_ IQR_en.srt 23.44KB
014 Code_ IQR_en.vtt 20.15KB
014 Code_ IQR.mp4 83.39MB
014 Code_ Logistic regression_en.srt 14.18KB
014 Code_ Logistic regression_en.vtt 12.14KB
014 Code_ Logistic regression.mp4 81.23MB
014 Code_ Spearman correlation and Fisher-Z_en.srt 11.10KB
014 Code_ Spearman correlation and Fisher-Z_en.vtt 9.61KB
014 Code_ Spearman correlation and Fisher-Z.mp4 42.71MB
014 Removing outliers by data trimming_en.srt 8.53KB
014 Removing outliers by data trimming_en.vtt 7.40KB
014 Removing outliers by data trimming.mp4 16.90MB
014 Sampling variability, noise, and other annoyances_en.srt 13.06KB
014 Sampling variability, noise, and other annoyances_en.vtt 11.37KB
014 Sampling variability, noise, and other annoyances.mp4 106.08MB
015 _Unsupervised learning__ Spearman correlation_en.srt 1.86KB
015 _Unsupervised learning__ Spearman correlation_en.vtt 1.64KB
015 _Unsupervised learning__ Spearman correlation.mp4 15.95MB
015 Code_ Data trimming to remove outliers_en.srt 16.30KB
015 Code_ Data trimming to remove outliers_en.vtt 14.05KB
015 Code_ Data trimming to remove outliers.mp4 65.29MB
015 Code_ sampling variability_en.srt 38.25KB
015 Code_ sampling variability_en.vtt 32.90KB
015 Code_ sampling variability.mp4 154.75MB
015 QQ plots_en.srt 10.18KB
015 QQ plots_en.vtt 8.88KB
015 QQ plots.mp4 16.22MB
015 Under- and over-fitting_en.srt 25.37KB
015 Under- and over-fitting_en.vtt 21.71KB
015 Under- and over-fitting.mp4 120.86MB
016 _Unsupervised learning__ confidence interval on correlation_en.srt 3.32KB
016 _Unsupervised learning__ confidence interval on correlation_en.vtt 2.93KB
016 _Unsupervised learning__ confidence interval on correlation.mp4 10.31MB
016 _Unsupervised learning__ Overfit data_en.srt 2.69KB
016 _Unsupervised learning__ Overfit data_en.vtt 2.36KB
016 _Unsupervised learning__ Overfit data.mp4 4.82MB
016 Code_ QQ plots_en.srt 23.48KB
016 Code_ QQ plots_en.vtt 20.10KB
016 Code_ QQ plots.mp4 90.30MB
016 Expected value_en.srt 15.37KB
016 Expected value_en.vtt 13.21KB
016 Expected value.mp4 59.63MB
016 Non-parametric solutions to outliers_en.srt 6.34KB
016 Non-parametric solutions to outliers_en.vtt 5.57KB
016 Non-parametric solutions to outliers.mp4 22.96MB
017 Comparing _nested_ models_en.srt 17.28KB
017 Comparing _nested_ models_en.vtt 15.11KB
017 Comparing _nested_ models.mp4 39.07MB
017 Conditional probability_en.srt 18.81KB
017 Conditional probability_en.vtt 16.12KB
017 Conditional probability.mp4 85.68MB
017 Kendall's correlation for ordinal data_en.srt 15.22KB
017 Kendall's correlation for ordinal data_en.vtt 13.13KB
017 Kendall's correlation for ordinal data.mp4 30.15MB
017 Nonlinear data transformations_en.srt 19.80KB
017 Nonlinear data transformations_en.vtt 17.38KB
017 Nonlinear data transformations.mp4 33.69MB
017 Statistical _moments__en.srt 13.06KB
017 Statistical _moments__en.vtt 11.16KB
017 Statistical _moments_.mp4 21.68MB
018 An outlier lecture on personal accountability_en.srt 4.12KB
018 An outlier lecture on personal accountability_en.vtt 3.65KB
018 An outlier lecture on personal accountability.mp4 17.70MB
018 Code_ conditional probabilities_en.srt 29.61KB
018 Code_ conditional probabilities_en.vtt 25.37KB
018 Code_ conditional probabilities.mp4 115.08MB
018 Code_ Kendall correlation_en.srt 17.59KB
018 Code_ Kendall correlation_en.vtt 22.96KB
018 Code_ Kendall correlation.mp4 184.22MB
018 Histograms part 2_ Number of bins_en.srt 14.32KB
018 Histograms part 2_ Number of bins_en.vtt 12.41KB
018 Histograms part 2_ Number of bins.mp4 23.50MB
018 What to do about missing data_en.srt 9.59KB
018 What to do about missing data_en.vtt 8.36KB
018 What to do about missing data.mp4 16.05MB
019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.srt 3.31KB
019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.vtt 2.95KB
019 _Unsupervised learning__ Does Kendall vs. Pearson matter_.mp4 14.95MB
019 Code_ Histogram bins_en.srt 17.86KB
019 Code_ Histogram bins_en.vtt 15.40KB
019 Code_ Histogram bins.mp4 118.12MB
019 Tree diagrams for conditional probabilities_en.srt 9.92KB
019 Tree diagrams for conditional probabilities_en.vtt 8.57KB
019 Tree diagrams for conditional probabilities.mp4 13.50MB
020 The Law of Large Numbers_en.srt 14.41KB
020 The Law of Large Numbers_en.vtt 12.47KB
020 The Law of Large Numbers.mp4 40.55MB
020 The subgroups correlation paradox_en.srt 6.98KB
020 The subgroups correlation paradox_en.vtt 6.13KB
020 The subgroups correlation paradox.mp4 21.57MB
020 Violin plots_en.srt 4.98KB
020 Violin plots_en.vtt 4.30KB
020 Violin plots.mp4 6.47MB
021 Code_ Law of Large Numbers in action_en.srt 27.83KB
021 Code_ Law of Large Numbers in action_en.vtt 23.84KB
021 Code_ Law of Large Numbers in action.mp4 165.60MB
021 Code_ violin plots_en.srt 15.42KB
021 Code_ violin plots_en.vtt 13.19KB
021 Code_ violin plots.mp4 104.96MB
021 Cosine similarity_en.srt 7.49KB
021 Cosine similarity_en.vtt 6.54KB
021 Cosine similarity.mp4 14.20MB
022 _Unsupervised learning__ asymmetric violin plots_en.srt 3.84KB
022 _Unsupervised learning__ asymmetric violin plots_en.vtt 3.31KB
022 _Unsupervised learning__ asymmetric violin plots.mp4 17.32MB
022 Code_ Cosine similarity vs. Pearson correlation_en.srt 31.27KB
022 Code_ Cosine similarity vs. Pearson correlation_en.vtt 26.93KB
022 Code_ Cosine similarity vs. Pearson correlation.mp4 102.19MB
022 The Central Limit Theorem_en.srt 15.56KB
022 The Central Limit Theorem_en.vtt 13.52KB
022 The Central Limit Theorem.mp4 26.67MB
023 Code_ the CLT in action_en.srt 23.58KB
023 Code_ the CLT in action_en.vtt 20.30KB
023 Code_ the CLT in action.mp4 93.32MB
023 Shannon entropy_en.srt 15.53KB
023 Shannon entropy_en.vtt 13.46KB
023 Shannon entropy.mp4 33.05MB
024 _Unsupervised learning__ Averaging pairs of numbers_en.srt 3.19KB
024 _Unsupervised learning__ Averaging pairs of numbers_en.vtt 2.76KB
024 _Unsupervised learning__ Averaging pairs of numbers.mp4 9.48MB
024 Code_ entropy_en.srt 30.29KB
024 Code_ entropy_en.vtt 25.84KB
024 Code_ entropy.mp4 96.76MB
025 _Unsupervised learning__ entropy and number of bins_en.srt 2.01KB
025 _Unsupervised learning__ entropy and number of bins_en.vtt 1.76KB
025 _Unsupervised learning__ entropy and number of bins.mp4 8.25MB
25299297-stats-intro-GuessTheTest.zip 3.72KB
32684220-statsML.zip 1.36MB
35855730-state-marriage-rates-90-95-99-19.xlsx 23.64KB
35855734-state-divorce-rates-90-95-99-19.xlsx 22.47KB
Distribution statistics by country
India (IN) 3
Bangladesh (BD) 2
France (FR) 1
Portugal (PT) 1
Philippines (PH) 1
Estonia (EE) 1
Total 9
IP List List of IP addresses which were distributed this torrent