Please note that this page does not hosts or makes available any of the listed filenames. You
cannot download any of those files from here.
|
0 |
4.71KB |
1 |
12.65KB |
1.1 03+Model+building+-+Seq+vs+Functional+API.ipynb |
405.95KB |
1.1 cat_dog_sub.zip |
128.08MB |
1.1 dogs.jpg |
438.21KB |
1.1 FaceRecognition DeepFace.ipynb |
2.47MB |
1.1 Hardhat - Vest.v1i.yolov5pytorch.zip |
96.53MB |
1.1 video based Action_Recognition_(UCF101_Dataset)ipynb.original |
3.22MB |
1.1 YOLOv8_object_tracking.ipynb |
10.10KB |
1.1 YOLO-WORLD.ipynb |
3.58MB |
1.2 Fast_sam (1).ipynb |
32.25KB |
1.2 TRAIN_YOLO_V5 objectDetection_ON_vest & hardhat_DATASET.ipynb |
71.24MB |
1.3 FastSAM-x.pt |
138.23MB |
1. 74 Stable Diffusion.mp4 |
183.65MB |
1. Cat Dog Images Datasets.html |
30B |
1. CNN INTRO.mp4 |
291.55MB |
1. DeepFake Generation Project 12.mp4 |
173.78MB |
1. Face Recognition Using DeepFace Project 11.mp4 |
270.20MB |
1. Fast SAM (Segment Anything Model).mp4 |
126.20MB |
1. GANs Introduction.mp4 |
78.47MB |
1. Human Action Recognition Project 10.mp4 |
394.23MB |
1. Image Annotation Tools.mp4 |
313.72MB |
1. Introduction.mp4 |
20.01MB |
1. Intuition Neural Networks.mp4 |
48.72MB |
1. Keras Preprocessing Layers Intro.mp4 |
59.49MB |
1. LSTM GRU Introduction.mp4 |
91.21MB |
1. Object Detection Part start.mp4 |
4.71MB |
1. Sequential Vs Functional API.mp4 |
62.24MB |
1. YOLOV5 Hardhat & Vest object detection Project-6.mp4 |
318.02MB |
1. YOLOV8 object Tracking.mp4 |
81.32MB |
1. YOLO-WORLD demo.mp4 |
197.91MB |
10 |
27.11KB |
10. Loss functions.mp4 |
119.85MB |
10. SSD.mp4 |
96.13MB |
11 |
461.38KB |
11. Performance Metrics.mp4 |
14.86MB |
12 |
850.73KB |
13 |
656.39KB |
14 |
795.90KB |
15 |
1.80MB |
16 |
132.12KB |
17 |
132.40KB |
18 |
1.53MB |
19 |
805.80KB |
2 |
9.94KB |
2.1 05+CNN+with+CIFAR10.ipynb |
95.80KB |
2.1 06+Keras+Preprocessing+Layers.ipynb |
1.54MB |
2.1 moondream1.ipynb |
1.23MB |
2.1 test+&+Validation+for+Xray+Dataset.zip |
76.85MB |
2.1 Track and count vehicles.ipynb |
1.60MB |
2.2 train_Normal+for+Xray+Dataset.zip |
778.03MB |
2.3 train_PNEUMONIA+for+Xray+Dataset.zip |
313.92MB |
2. 75 clip and unet for stable diffusion.mp4 |
83.31MB |
2. CNN_Implementation.mp4 |
281.36MB |
2. GAN COMPONENTS.mp4 |
64.52MB |
2. Keras Preprocessing Layers Image Augmentation Code.mp4 |
157.14MB |
2. Moondream1.mp4 |
118.36MB |
2. Neural Networks.mp4 |
230.53MB |
2. Object Tracking & Counting Project-9.mp4 |
310.06MB |
2. Past Present Future Trends.mp4 |
44.98MB |
2. Semantic segmentation vs instance segmentation.mp4 |
75.48MB |
2. Sequential API code.mp4 |
279.22MB |
2. Xray DataSet.html |
19B |
2. YOLOv8 intro.mp4 |
53.35MB |
20 |
1.47MB |
21 |
862.77KB |
22 |
1.68MB |
23 |
1.53MB |
24 |
95.10KB |
25 |
1.52MB |
26 |
358.56KB |
27 |
1.65MB |
28 |
229.85KB |
29 |
1.06MB |
3 |
7.99KB |
3.1 Proj_04_Weather_yolo_img_clsf_data.ipynb |
867.33KB |
3.2 Weather_yolo_img_clsf_data (1).zip |
498.23MB |
3. 76 Stable diffusion tools.mp4 |
319.74MB |
3. Applications.mp4 |
20.70MB |
3. Approach to deep learning problems.mp4 |
24.11MB |
3. CNN Exercise -1 Problem.mp4 |
5.02MB |
3. Functional API Code.mp4 |
149.70MB |
3. GANs Training.mp4 |
119.24MB |
3. Keras Preprocessing Layers Exercise-3.mp4 |
2.59MB |
3. Types of Segmentation.mp4 |
125.65MB |
3. YOLOv8 classification Project-7.mp4 |
344.93MB |
30 |
879.79KB |
31 |
530.34KB |
32 |
303.49KB |
33 |
481.73KB |
34 |
392.66KB |
35 |
613.12KB |
36 |
1.69MB |
37 |
1.77MB |
38 |
1.90MB |
39 |
534.36KB |
4 |
200.77KB |
4.1 config (1).yaml |
101B |
4.1 Exercise+2.+Mnist+classifier+using+CNN.ipynb |
49.07KB |
4.1 Exercise-4+Keras+Preprocessing+Layer+cats+n+dogs.ipynb |
2.08MB |
4.2 Instance Segmentation yolov8.ipynb |
1.71MB |
4.3 Pothole segmentation yolov8 (1).zip |
49.67MB |
4. 77 Stable diffusion tools.mp4 |
111.96MB |
4. CNN Exercise -1 Solution.mp4 |
190.48MB |
4. GANs Applications Pros _ Cons.mp4 |
42.58MB |
4. Image Processing basics.mp4 |
28.23MB |
4. Instance segmentation using YOLOV8-seg Project -8.mp4 |
153.48MB |
4. Keras Preprocessing Layers Solution-3.mp4 |
57.67MB |
4. Lifecycle of model 5 steps.mp4 |
39.41MB |
4. ML problem Cost Gradient CV.mp4 |
141.62MB |
4. Two step object detection.mp4 |
59.23MB |
40 |
1.92MB |
41 |
9.36KB |
42 |
1.60MB |
43 |
1.80MB |
44 |
360.08KB |
45 |
1.86MB |
46 |
152.23KB |
47 |
776.51KB |
48 |
1.64MB |
49 |
39.13KB |
5 |
263.13KB |
5.1 13+GAN+fashion+MNIST+Generator.ipynb |
35.35KB |
5.1 Pose -keypoint detection.ipynb |
1.39MB |
5.2 street.jpg |
257.82KB |
5.3 street2.jpg |
134.45KB |
5. 78 stable diffusion resources.mp4 |
263.87MB |
5. Activation Functions.mp4 |
160.94MB |
5. CNN Exercise -2 Problem.mp4 |
2.76MB |
5. Color Spaces.mp4 |
32.97MB |
5. GAN Implementation.mp4 |
258.47MB |
5. Keypoint detection using YOLOV8-pose.mp4 |
129.48MB |
5. RCNN Architecture.mp4 |
53.00MB |
5. Transfer Learning Introduction.mp4 |
126.40MB |
50 |
1.47MB |
51 |
1.87MB |
52 |
744.73KB |
53 |
812.14KB |
54 |
704.13KB |
55 |
698.04KB |
56 |
1.53MB |
57 |
1.15MB |
58 |
531.44KB |
59 |
777.31KB |
6 |
34.63KB |
6.1 07+Transfer+Learning+on+Cats+and+dogs+dataset.ipynb |
512.21KB |
6.1 Exercise+3.+Fashion-MNIST+Classifier+using+CNN.ipynb |
93.67KB |
6.1 image_caption_map (2).csv |
312.11KB |
6.1 Yolo Video run.ipynb |
835.16KB |
6.2 images (2).zip |
267.87MB |
6.2 YOLO Videos for inference.zip |
388.43MB |
6. 79 STABLE DIFFUSION code.mp4 |
180.35MB |
6. CNN Exercise -2 Solution.mp4 |
120.14MB |
6. Fast RCNN.mp4 |
62.80MB |
6. Project Image Captioning Problem-5.mp4 |
36.18MB |
6. Sequential Vs Functional API.mp4 |
64.27MB |
6. transfer learning code.mp4 |
289.17MB |
6. YOLO on videos.mp4 |
202.47MB |
60 |
1.48MB |
61 |
1.73MB |
62 |
1.20MB |
63 |
1.76MB |
64 |
519.71KB |
65 |
785.09KB |
66 |
335.90KB |
67 |
462.39KB |
68 |
661.00KB |
69 |
1019.44KB |
7 |
86.88KB |
7.1 Project_Image_Captioning_with_Googles_conceptual_captions_data (1).ipynb |
2.86MB |
7. 80 stable diffusion UI.mp4 |
147.53MB |
7. Faster RCNN.mp4 |
34.00MB |
7. Project image captioning solution Part- 1.mp4 |
139.40MB |
7. Tips for Improving Model Performance.mp4 |
55.55MB |
7. Transfer Learning Exercise 4 -XrayDataset.mp4 |
4.61MB |
70 |
334.96KB |
71 |
1.28MB |
72 |
1.02MB |
73 |
1.42MB |
74 |
607.91KB |
75 |
1.82MB |
76 |
524.87KB |
77 |
2.00MB |
78 |
1.03MB |
79 |
1.77MB |
8 |
285.48KB |
8.1 04+Feed+forward+networks.ipynb |
146.97KB |
8.1 Exercise+5-+transfer_learning+Chest+Xray+Dataset.ipynb |
735.30KB |
8. 81 stable cascade.mp4 |
130.10MB |
8. Feed Forward Network Implementation and Keras Callbacks.mp4 |
293.27MB |
8. Mask RCNN.mp4 |
35.49MB |
8. Project image captioning solution Part- 2.mp4 |
205.16MB |
8. Transfer learning Exercise-4 Solution.mp4 |
138.31MB |
80 |
1.89MB |
81 |
1.30MB |
82 |
1.99MB |
83 |
1.14MB |
84 |
1000.55KB |
85 |
1.29MB |
86 |
1.39MB |
87 |
434.06KB |
88 |
797.87KB |
89 |
1.14MB |
9 |
198.59KB |
9. 82 forge setup.mp4 |
93.27MB |
9. Intro to YOLO.mp4 |
204.32MB |
9. Optimizers.mp4 |
231.21MB |
9. Project Image captioning solution Part- 3.mp4 |
127.99MB |
90 |
1.24MB |
91 |
1.41MB |
92 |
1.53MB |
TutsNode.org.txt |
59B |