Torrent Info
Title [FTU] Udemy - The Data Science Course 2019 Complete Data Science Bootcamp
Category
Size 13.73GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx 146.51KB
1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx 1.74MB
1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx 51.71KB
1.1 5 Files Needed to Deploy the Model.html 134B
1.1 Absenteeism_data.csv.csv 32.05KB
1.1 Absenteeism_preprocessed.csv.csv 29.13KB
1.1 Arithmetic Operators - Resources.html 134B
1.1 Audiobooks_data.csv.csv 710.77KB
1.1 Comparison Operators - Resources.html 134B
1.1 Course notes_descriptive_statistics.pdf.pdf 482.21KB
1.1 Course notes_descriptive_statistics.pdf.pdf 482.21KB
1.1 Course notes_hypothesis_testing.pdf.pdf 648.20KB
1.1 Course notes_inferential statistics.pdf.pdf 382.32KB
1.1 Course Notes - Basic Probability.pdf.pdf 371.05KB
1.1 Course Notes - Bayesian Inference.pdf.pdf 386.01KB
1.1 Course Notes - Combinatorics.pdf.pdf 226.12KB
1.1 Course Notes - Probability Distributions.pdf.pdf 456.24KB
1.1 Course Notes - Section 2.pdf.pdf 578.08KB
1.1 Course Notes - Section 6.pdf.pdf 936.42KB
1.1 Defining a Function in Python - Resources.html 134B
1.1 For Loops - Resources.html 134B
1.1 Introduction to the If Statement - Resources.html 134B
1.1 Lists - Resources.html 134B
1.1 Python Introduction - Course Notes.pdf.pdf 2.04MB
1.1 Shortcuts-for-Jupyter.pdf.pdf 619.17KB
1.1 Shortcuts-for-Jupyter.pdf.pdf 619.17KB
1.1 sklearn - Linear Regression - Practical Example (Part 1).html 134B
1.2 Bais NN Example Part 1.html 136B
1.2 df_preprocessed.csv.csv 29.11KB
1.2 Statistics Glossary.xlsx.xlsx 20.26KB
1.2 Variables - Resources.html 134B
1.3 data_preprocessing_homework.pdf.pdf 134.47KB
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 79.56MB
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.srt 8.99KB
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt 7.90KB
1. A Practical Example What You Will Learn in This Course.mp4 43.90MB
1. A Practical Example What You Will Learn in This Course.srt 6.37KB
1. A Practical Example What You Will Learn in This Course.vtt 5.62KB
1. Are You Sure You're All Set.html 519B
1. Basic NN Example (Part 1).mp4 20.59MB
1. Basic NN Example (Part 1).srt 4.47KB
1. Basic NN Example (Part 1).vtt 3.91KB
1. Business Case Getting acquainted with the dataset.mp4 87.65MB
1. Business Case Getting acquainted with the dataset.srt 10.79KB
1. Business Case Getting acquainted with the dataset.vtt 9.37KB
1. Comparison Operators.mp4 10.18MB
1. Comparison Operators.srt 2.47KB
1. Comparison Operators.vtt 2.14KB
1. Data Science and Business Buzzwords Why are there so many.mp4 37.68MB
1. Data Science and Business Buzzwords Why are there so many.srt 6.63KB
1. Data Science and Business Buzzwords Why are there so many.vtt 5.84KB
1. Debunking Common Misconceptions.mp4 45.37MB
1. Debunking Common Misconceptions.srt 5.30KB
1. Debunking Common Misconceptions.vtt 4.69KB
1. Defining a Function in Python.mp4 7.74MB
1. Defining a Function in Python.srt 2.53KB
1. Defining a Function in Python.vtt 2.20KB
1. EXERCISE - Age vs Probability.html 385B
1. Exploring the Problem with a Machine Learning Mindset.mp4 27.54MB
1. Exploring the Problem with a Machine Learning Mindset.srt 4.59KB
1. Exploring the Problem with a Machine Learning Mindset.vtt 4.02KB
1. Finding the Job - What to Expect and What to Look for.mp4 35.79MB
1. Finding the Job - What to Expect and What to Look for.srt 4.50KB
1. Finding the Job - What to Expect and What to Look for.vtt 3.94KB
1. For Loops.mp4 11.80MB
1. For Loops.srt 2.80KB
1. For Loops.vtt 2.44KB
1. Fundamentals of Combinatorics.mp4 7.55MB
1. Fundamentals of Combinatorics.srt 1.31KB
1. Fundamentals of Combinatorics.vtt 1.18KB
1. Fundamentals of Probability Distributions.mp4 42.36MB
1. Fundamentals of Probability Distributions.srt 7.55KB
1. Fundamentals of Probability Distributions.vtt 6.72KB
1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 52.30MB
1. Game Plan for this Python, SQL, and Tableau Business Exercise.srt 5.46KB
1. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt 4.80KB
1. How to Install TensorFlow.mp4 14.56MB
1. How to Install TensorFlow.srt 3.22KB
1. How to Install TensorFlow.vtt 2.84KB
1. Introduction.mp4 15.50MB
1. Introduction.srt 1.63KB
1. Introduction.vtt 1.44KB
1. Introduction to Cluster Analysis.mp4 53.42MB
1. Introduction to Cluster Analysis.srt 4.80KB
1. Introduction to Cluster Analysis.vtt 4.21KB
1. Introduction to Logistic Regression.mp4 27.06MB
1. Introduction to Logistic Regression.srt 1.62KB
1. Introduction to Logistic Regression.vtt 1.44KB
1. Introduction to Neural Networks.mp4 42.92MB
1. Introduction to Neural Networks.srt 5.90KB
1. Introduction to Neural Networks.vtt 5.18KB
1. Introduction to Programming.mp4 58.54MB
1. Introduction to Programming.srt 6.91KB
1. Introduction to Programming.vtt 6.08KB
1. Introduction to Regression Analysis.mp4 17.32MB
1. Introduction to Regression Analysis.srt 2.21KB
1. Introduction to Regression Analysis.vtt 1.95KB
1. K-Means Clustering.mp4 27.29MB
1. K-Means Clustering.srt 6.67KB
1. K-Means Clustering.vtt 5.76KB
1. Lists.mp4 22.00MB
1. Lists.srt 4.99KB
1. Lists.vtt 4.30KB
1. MNIST What is the MNIST Dataset.mp4 17.82MB
1. MNIST What is the MNIST Dataset.srt 3.50KB
1. MNIST What is the MNIST Dataset.vtt 3.07KB
1. Multiple Linear Regression.mp4 21.53MB
1. Multiple Linear Regression.srt 3.35KB
1. Multiple Linear Regression.vtt 2.93KB
1. Necessary Programming Languages and Software Used in Data Science.mp4 63.11MB
1. Necessary Programming Languages and Software Used in Data Science.srt 7.30KB
1. Necessary Programming Languages and Software Used in Data Science.vtt 6.42KB
1. Null vs Alternative Hypothesis.mp4 92.05MB
1. Null vs Alternative Hypothesis.srt 6.97KB
1. Null vs Alternative Hypothesis.vtt 6.18KB
1. Object Oriented Programming.mp4 33.59MB
1. Object Oriented Programming.srt 6.10KB
1. Object Oriented Programming.vtt 5.34KB
1. Population and Sample.mp4 58.11MB
1. Population and Sample.srt 5.47KB
1. Population and Sample.vtt 4.81KB
1. Practical Example Descriptive Statistics.mp4 160.46MB
1. Practical Example Descriptive Statistics.srt 20.79KB
1. Practical Example Descriptive Statistics.vtt 18.00KB
1. Practical Example Hypothesis Testing.mp4 69.48MB
1. Practical Example Hypothesis Testing.srt 8.49KB
1. Practical Example Hypothesis Testing.vtt 7.43KB
1. Practical Example Inferential Statistics.mp4 102.67MB
1. Practical Example Inferential Statistics.srt 13.65KB
1. Practical Example Inferential Statistics.vtt 11.90KB
1. Practical Example Linear Regression (Part 1).mp4 97.09MB
1. Practical Example Linear Regression (Part 1).srt 14.86KB
1. Practical Example Linear Regression (Part 1).vtt 12.98KB
1. Preprocessing Introduction.mp4 27.78MB
1. Preprocessing Introduction.srt 3.87KB
1. Preprocessing Introduction.vtt 3.39KB
1. Probability in Finance.mp4 99.07MB
1. Probability in Finance.srt 9.84KB
1. Probability in Finance.vtt 8.71KB
1. Sets and Events.mp4 25.02MB
1. Sets and Events.srt 5.06KB
1. Sets and Events.vtt 4.48KB
1. Stochastic Gradient Descent.mp4 28.69MB
1. Stochastic Gradient Descent.srt 4.82KB
1. Stochastic Gradient Descent.vtt 4.18KB
1. Summary on What You've Learned.mp4 39.76MB
1. Summary on What You've Learned.srt 5.22KB
1. Summary on What You've Learned.vtt 4.61KB
1. Techniques for Working with Traditional Data.mp4 79.85MB
1. Techniques for Working with Traditional Data.srt 10.63KB
1. Techniques for Working with Traditional Data.vtt 9.30KB
1. The Basic Probability Formula.mp4 44.02MB
1. The Basic Probability Formula.srt 8.91KB
1. The Basic Probability Formula.vtt 7.83KB
1. The IF Statement.mp4 13.63MB
1. The IF Statement.srt 3.60KB
1. The IF Statement.vtt 3.12KB
1. The Linear Regression Model.mp4 57.37MB
1. The Linear Regression Model.srt 7.06KB
1. The Linear Regression Model.vtt 6.14KB
1. The Reason behind these Disciplines.mp4 71.19MB
1. The Reason behind these Disciplines.srt 6.50KB
1. The Reason behind these Disciplines.vtt 5.69KB
1. Types of Clustering.mp4 44.58MB
1. Types of Clustering.srt 4.66KB
1. Types of Clustering.vtt 4.12KB
1. Types of Data.mp4 72.53MB
1. Types of Data.srt 5.96KB
1. Types of Data.vtt 5.25KB
1. Using Arithmetic Operators in Python.mp4 18.92MB
1. Using Arithmetic Operators in Python.srt 4.12KB
1. Using Arithmetic Operators in Python.vtt 3.58KB
1. Variables.mp4 25.30MB
1. Variables.srt 6.06KB
1. Variables.vtt 5.27KB
1. What are Confidence Intervals.mp4 49.98MB
1. What are Confidence Intervals.srt 3.26KB
1. What are Confidence Intervals.vtt 2.86KB
1. What are Data, Servers, Clients, Requests, and Responses.mp4 69.04MB
1. What are Data, Servers, Clients, Requests, and Responses.srt 5.94KB
1. What are Data, Servers, Clients, Requests, and Responses.vtt 5.20KB
1. What is a Layer.mp4 12.50MB
1. What is a Layer.srt 2.39KB
1. What is a Layer.vtt 2.13KB
1. What is a matrix.mp4 33.59MB
1. What is a matrix.srt 4.35KB
1. What is a matrix.vtt 3.80KB
1. What is Initialization.mp4 21.76MB
1. What is Initialization.srt 3.51KB
1. What is Initialization.vtt 3.09KB
1. What is Overfitting.mp4 31.09MB
1. What is Overfitting.srt 5.58KB
1. What is Overfitting.vtt 4.93KB
1. What is sklearn and How is it Different from Other Packages.mp4 27.25MB
1. What is sklearn and How is it Different from Other Packages.srt 3.43KB
1. What is sklearn and How is it Different from Other Packages.vtt 3.01KB
1. What to Expect from the Following Sections.html 2.48KB
1. What to Expect from this Part.mp4 31.11MB
1. What to Expect from this Part.srt 4.63KB
1. What to Expect from this Part.vtt 4.05KB
10.1 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx 13.15KB
10.1 Addition and Subtraction of Matrices Python Notebook.html 178B
10.1 Binary predictors.html 134B
10.1 Feature selection.html 134B
10.1 Indexing Elements - Resources.html 134B
10.1 Online p-value calculator.pdf.pdf 1.15MB
10.1 TensorFlow MNIST All Exercises.html 144B
10.2 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx 11.75KB
10. A1 Linearity.html 158B
10. A Breakdown of our Data Science Infographic.html 158B
10. Addition and Subtraction of Matrices.mp4 32.62MB
10. Addition and Subtraction of Matrices.srt 4.05KB
10. Addition and Subtraction of Matrices.vtt 3.48KB
10. Analyzing the Reasons for Absence.mp4 40.57MB
10. Analyzing the Reasons for Absence.srt 5.85KB
10. Analyzing the Reasons for Absence.vtt 5.12KB
10. Binary Predictors in a Logistic Regression.mp4 38.44MB
10. Binary Predictors in a Logistic Regression.srt 5.42KB
10. Binary Predictors in a Logistic Regression.vtt 4.75KB
10. Business Case Testing the Model.mp4 11.21MB
10. Business Case Testing the Model.srt 2.71KB
10. Business Case Testing the Model.vtt 2.36KB
10. Central Limit Theorem.html 158B
10. Discrete Distributions The Bernoulli Distribution.html 158B
10. Feature Selection (F-regression).mp4 29.51MB
10. Feature Selection (F-regression).srt 6.67KB
10. Feature Selection (F-regression).vtt 5.85KB
10. Indexing Elements.mp4 5.94MB
10. Indexing Elements.srt 1.71KB
10. Indexing Elements.vtt 1.47KB
10. Interpreting the Coefficients of the Logistic Regression.mp4 40.40MB
10. Interpreting the Coefficients of the Logistic Regression.srt 7.25KB
10. Interpreting the Coefficients of the Logistic Regression.vtt 6.34KB
10. Jupyter's Interface.html 158B
10. Margin of Error.mp4 59.16MB
10. Margin of Error.srt 6.12KB
10. Margin of Error.vtt 5.39KB
10. MNIST Exercises.html 2.13KB
10. Mutually Exclusive Sets.html 158B
10. Numerical Variables Exercise.html 81B
10. p-value.mp4 55.87MB
10. p-value.srt 5.04KB
10. p-value.vtt 4.46KB
10. Relationship between Clustering and Regression.mp4 9.93MB
10. Relationship between Clustering and Regression.srt 2.18KB
10. Relationship between Clustering and Regression.vtt 1.92KB
10. Software Integration - Explained.html 158B
10. Solving Variations without Repetition.html 158B
10. Techniques for Working with Traditional Methods.mp4 123.51MB
10. Techniques for Working with Traditional Methods.srt 11.08KB
10. Techniques for Working with Traditional Methods.vtt 9.66KB
10. The Linear Model with Multiple Inputs.html 158B
10. Using Seaborn for Graphs.mp4 12.25MB
10. Using Seaborn for Graphs.srt 1.48KB
10. Using Seaborn for Graphs.vtt 1.30KB
11.10 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html 165B
11.11 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html 165B
11.1 2.5. The Histogram_lesson.xlsx.xlsx 18.63KB
11.1 Binary predictors - exercise.html 134B
11.1 Calculation of P-values.html 134B
11.1 Combinations With Repetition.pdf.pdf 207.41KB
11.1 Logistic Regression prior to Backward Elimination.html 226B
11.1 Market segmentation.html 134B
11.1 Python Introduction - Course Notes.pdf.pdf 2.03MB
11.1 TensorFlow Business Case Homework.html 134B
11.1 TensorFlow MNIST '3. Width and Depth' Solution.html 160B
11.2 Bank_data.csv.csv 19.55KB
11.2 TensorFlow MNIST 'Around 98% Accuracy' Solution.html 157B
11.3 TensorFlow MNIST '2. Depth' Solution.html 150B
11.4 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html 162B
11.5 TensorFlow MNIST 'Time' Solution.html 162B
11.6 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html 162B
11.7 TensorFlow MNIST '1. Width' Solution.html 150B
11.8 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html 172B
11.9 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html 172B
11. A2 No Endogeneity.mp4 35.67MB
11. A2 No Endogeneity.srt 5.24KB
11. A2 No Endogeneity.vtt 4.58KB
11. Addition and Subtraction of Matrices.html 158B
11. A Note on Calculation of P-values with sklearn.html 372B
11. Backward Elimination or How to Simplify Your Model.mp4 39.56MB
11. Backward Elimination or How to Simplify Your Model.srt 5.24KB
11. Backward Elimination or How to Simplify Your Model.vtt 4.58KB
11. Binary Predictors in a Logistic Regression - Exercise.html 87B
11. Business Case A Comment on the Homework.mp4 36.39MB
11. Business Case A Comment on the Homework.srt 5.30KB
11. Business Case A Comment on the Homework.vtt 4.65KB
11. Dependence and Independence of Sets.mp4 34.78MB
11. Dependence and Independence of Sets.srt 3.47KB
11. Dependence and Independence of Sets.vtt 3.05KB
11. Discrete Distributions The Binomial Distribution.mp4 65.52MB
11. Discrete Distributions The Binomial Distribution.srt 8.34KB
11. Discrete Distributions The Binomial Distribution.vtt 7.40KB
11. How to Interpret the Regression Table.mp4 44.65MB
11. How to Interpret the Regression Table.srt 6.31KB
11. How to Interpret the Regression Table.vtt 5.50KB
11. Indexing Elements.html 158B
11. Margin of Error.html 158B
11. Market Segmentation with Cluster Analysis (Part 1).mp4 43.01MB
11. Market Segmentation with Cluster Analysis (Part 1).srt 7.53KB
11. Market Segmentation with Cluster Analysis (Part 1).vtt 6.53KB
11. MNIST Solutions.html 2.19KB
11. Obtaining Dummies from a Single Feature.mp4 81.11MB
11. Obtaining Dummies from a Single Feature.srt 10.21KB
11. Obtaining Dummies from a Single Feature.vtt 8.96KB
11. p-value.html 158B
11. Python 2 vs Python 3.mp4 11.28MB
11. Python 2 vs Python 3.srt 3.32KB
11. Python 2 vs Python 3.vtt 2.95KB
11. Solving Combinations.mp4 57.35MB
11. Solving Combinations.srt 5.61KB
11. Solving Combinations.vtt 4.98KB
11. Standard error.mp4 22.78MB
11. Standard error.srt 2.03KB
11. Standard error.vtt 1.76KB
11. Techniques for Working with Traditional Methods.html 158B
11. The Histogram.mp4 13.78MB
11. The Histogram.srt 3.01KB
11. The Histogram.vtt 2.67KB
11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 38.32MB
11. The Linear model with Multiple Inputs and Multiple Outputs.srt 5.47KB
11. The Linear model with Multiple Inputs and Multiple Outputs.vtt 4.79KB
12.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx 10.47KB
12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx 14.54KB
12.1 Accuracy.html 134B
12.1 Errors when Adding Matrices Python Notebook.html 220B
12.1 Market segmentation.html 134B
12.1 Structure Your Code with Indentation - Resources.html 134B
12.1 Summary table with p-values.html 134B
12.1 TensorFlow Business Case Homework.html 134B
12. A2 No Endogeneity.html 158B
12. Business Case Final Exercise.html 439B
12. Calculating the Accuracy of the Model.mp4 32.85MB
12. Calculating the Accuracy of the Model.srt 4.13KB
12. Calculating the Accuracy of the Model.vtt 3.63KB
12. Confidence intervals. Two means. Dependent samples.mp4 70.48MB
12. Confidence intervals. Two means. Dependent samples.srt 8.04KB
12. Confidence intervals. Two means. Dependent samples.vtt 7.10KB
12. Creating a Summary Table with p-values.mp4 12.30MB
12. Creating a Summary Table with p-values.srt 3.01KB
12. Creating a Summary Table with p-values.vtt 2.62KB
12. Dependence and Independence of Sets.html 158B
12. Discrete Distributions The Binomial Distribution.html 158B
12. Errors when Adding Matrices.mp4 11.18MB
12. Errors when Adding Matrices.srt 2.58KB
12. Errors when Adding Matrices.vtt 2.27KB
12. EXERCISE - Obtaining Dummies from a Single Feature.html 129B
12. How to Interpret the Regression Table.html 158B
12. Market Segmentation with Cluster Analysis (Part 2).mp4 56.11MB
12. Market Segmentation with Cluster Analysis (Part 2).srt 9.19KB
12. Market Segmentation with Cluster Analysis (Part 2).vtt 7.96KB
12. Real Life Examples of Traditional Methods.mp4 42.79MB
12. Real Life Examples of Traditional Methods.srt 3.59KB
12. Real Life Examples of Traditional Methods.vtt 3.14KB
12. Solving Combinations.html 158B
12. Standard Error.html 158B
12. Structuring with Indentation.mp4 6.81MB
12. Structuring with Indentation.srt 2.27KB
12. Structuring with Indentation.vtt 1.96KB
12. Test for the Mean. Population Variance Unknown.mp4 40.25MB
12. Test for the Mean. Population Variance Unknown.srt 5.73KB
12. Test for the Mean. Population Variance Unknown.vtt 5.11KB
12. Testing the Model We Created.mp4 49.06MB
12. Testing the Model We Created.srt 6.50KB
12. Testing the Model We Created.vtt 5.67KB
12. The Histogram.html 158B
12. The Linear model with Multiple Inputs and Multiple Outputs.html 158B
13.1 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx 13.74KB
13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx 11.34KB
13.1 Accuracy of the model - exercise.html 134B
13.1 Multiple linear regression - Exercise.html 134B
13.1 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf 289.12KB
13.1 Symmetry Explained.pdf.pdf 85.04KB
13.1 Transpose of a Matrix Python Notebook.html 167B
13.2 2.5.The-Histogram-exercise.xlsx.xlsx 15.50KB
13.2 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx 14.24KB
13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx 12.61KB
13.2 Bank_data.csv.csv 19.55KB
13.3 2.5.The-Histogram-exercise-solution.xlsx.xlsx 17.10KB
13. A3 Normality and Homoscedasticity.mp4 42.70MB
13. A3 Normality and Homoscedasticity.srt 6.67KB
13. A3 Normality and Homoscedasticity.vtt 5.81KB
13. Calculating the Accuracy of the Model.html 87B
13. Confidence intervals. Two means. Dependent samples Exercise.html 81B
13. Decomposition of Variability.mp4 49.67MB
13. Decomposition of Variability.srt 4.17KB
13. Decomposition of Variability.vtt 3.67KB
13. Discrete Distributions The Poisson Distribution.mp4 58.42MB
13. Discrete Distributions The Poisson Distribution.srt 6.50KB
13. Discrete Distributions The Poisson Distribution.vtt 5.77KB
13. Estimators and Estimates.mp4 47.83MB
13. Estimators and Estimates.srt 3.72KB
13. Estimators and Estimates.vtt 3.27KB
13. Graphical Representation of Simple Neural Networks.mp4 22.64MB
13. Graphical Representation of Simple Neural Networks.srt 2.69KB
13. Graphical Representation of Simple Neural Networks.vtt 2.34KB
13. Histogram Exercise.html 81B
13. How is Clustering Useful.mp4 74.45MB
13. How is Clustering Useful.srt 6.40KB
13. How is Clustering Useful.vtt 5.65KB
13. Machine Learning (ML) Techniques.mp4 99.33MB
13. Machine Learning (ML) Techniques.srt 8.74KB
13. Machine Learning (ML) Techniques.vtt 7.67KB
13. Multiple Linear Regression - Exercise.html 76B
13. Saving the Model and Preparing it for Deployment.mp4 37.46MB
13. Saving the Model and Preparing it for Deployment.srt 5.58KB
13. Saving the Model and Preparing it for Deployment.vtt 4.88KB
13. SOLUTION - Obtaining Dummies from a Single Feature.html 116B
13. Structuring with Indentation.html 158B
13. Symmetry of Combinations.mp4 38.69MB
13. Symmetry of Combinations.srt 4.31KB
13. Symmetry of Combinations.vtt 3.79KB
13. Test for the Mean. Population Variance Unknown Exercise.html 81B
13. The Conditional Probability Formula.mp4 45.86MB
13. The Conditional Probability Formula.srt 4.94KB
13. The Conditional Probability Formula.vtt 4.42KB
13. Transpose of a Matrix.mp4 38.08MB
13. Transpose of a Matrix.srt 5.37KB
13. Transpose of a Matrix.vtt 4.69KB
14.1 2.6. Cross table and scatter plot.xlsx.xlsx 26.12KB
14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx 9.83KB
14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx 9.79KB
14.1 Dot Product Python Notebook.html 154B
14.1 Feature scaling.html 134B
14.1 iris_dataset.csv.csv 2.40KB
14.2 Exercise - part 1.html 134B
14. A4 No Autocorrelation.mp4 31.52MB
14. A4 No Autocorrelation.srt 4.91KB
14. A4 No Autocorrelation.vtt 4.27KB
14. ARTICLE - A Note on 'pickling'.html 2.14KB
14. Confidence intervals. Two means. Independent samples (Part 1).mp4 28.75MB
14. Confidence intervals. Two means. Independent samples (Part 1).srt 6.07KB
14. Confidence intervals. Two means. Independent samples (Part 1).vtt 5.33KB
14. Cross Tables and Scatter Plots.mp4 39.80MB
14. Cross Tables and Scatter Plots.srt 6.69KB
14. Cross Tables and Scatter Plots.vtt 5.87KB
14. Decomposition of Variability.html 158B
14. Discrete Distributions The Poisson Distribution.html 158B
14. Dot Product.mp4 24.00MB
14. Dot Product.srt 4.27KB
14. Dot Product.vtt 3.68KB
14. Dropping a Dummy Variable from the Data Set.html 2.34KB
14. Estimators and Estimates.html 158B
14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html 87B
14. Feature Scaling (Standardization).mp4 39.09MB
14. Feature Scaling (Standardization).srt 7.68KB
14. Feature Scaling (Standardization).vtt 6.77KB
14. Graphical Representation of Simple Neural Networks.html 158B
14. Machine Learning (ML) Techniques.html 158B
14. Symmetry of Combinations.html 158B
14. Test for the Mean. Dependent Samples.mp4 50.37MB
14. Test for the Mean. Dependent Samples.srt 6.27KB
14. Test for the Mean. Dependent Samples.vtt 5.59KB
14. The Conditional Probability Formula.html 158B
14. Underfitting and Overfitting.mp4 22.30MB
14. Underfitting and Overfitting.srt 4.98KB
14. Underfitting and Overfitting.vtt 4.37KB
15.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx 10.12KB
15.1 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx 14.40KB
15.1 Dot Product of Matrices Python Notebook.html 171B
15.1 Feature scaling standardization.html 134B
15.1 iris_dataset.csv.csv 2.40KB
15.1 Logistic Regression.html 196B
15.1 Solving Integrals.pdf.pdf 343.85KB
15.1 Testing the model.html 134B
15.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx 9.83KB
15.2 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx 12.80KB
15.2 iris_with_answers.csv.csv 3.63KB
15.2 Logistic Regression with Comments.html 210B
15.3 Exercise - part 2.html 134B
15. A4 No autocorrelation.html 158B
15. Characteristics of Continuous Distributions.mp4 79.77MB
15. Characteristics of Continuous Distributions.srt 8.63KB
15. Characteristics of Continuous Distributions.vtt 7.62KB
15. Confidence intervals. Two means. Independent samples (Part 1) Exercise.html 81B
15. Cross Tables and Scatter Plots.html 158B
15. Dot Product of Matrices.mp4 49.43MB
15. Dot Product of Matrices.srt 9.52KB
15. Dot Product of Matrices.vtt 8.22KB
15. EXERCISE - Saving the Model (and Scaler).html 284B
15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html 87B
15. Feature Selection through Standardization of Weights.mp4 34.89MB
15. Feature Selection through Standardization of Weights.srt 7.27KB
15. Feature Selection through Standardization of Weights.vtt 6.41KB
15. More on Dummy Variables A Statistical Perspective.mp4 13.74MB
15. More on Dummy Variables A Statistical Perspective.srt 1.70KB
15. More on Dummy Variables A Statistical Perspective.vtt 1.50KB
15. Solving Combinations with Separate Sample Spaces.mp4 33.15MB
15. Solving Combinations with Separate Sample Spaces.srt 3.74KB
15. Solving Combinations with Separate Sample Spaces.vtt 3.31KB
15. Test for the Mean. Dependent Samples Exercise.html 81B
15. Testing the Model.mp4 32.28MB
15. Testing the Model.srt 6.55KB
15. Testing the Model.vtt 5.70KB
15. The Law of Total Probability.mp4 35.21MB
15. The Law of Total Probability.srt 3.48KB
15. The Law of Total Probability.vtt 3.10KB
15. Types of Machine Learning.mp4 125.14MB
15. Types of Machine Learning.srt 10.52KB
15. Types of Machine Learning.vtt 9.23KB
15. What is the Objective Function.mp4 17.91MB
15. What is the Objective Function.srt 2.12KB
15. What is the Objective Function.vtt 1.87KB
15. What is the OLS.mp4 28.31MB
15. What is the OLS.srt 3.82KB
15. What is the OLS.vtt 3.33KB
16.1 2.6. Cross table and scatter plot_exercise.xlsx.xlsx 16.28KB
16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx 9.52KB
16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx 9.63KB
16.1 Predicting with the Standardized Cofficients.html 134B
16.1 Testing the model - exercise.html 134B
16.2 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx 40.44KB
16.2 Bank_data.csv.csv 19.55KB
16.3 Bank_data_testing.csv.csv 8.30KB
16. A5 No Multicollinearity.mp4 28.70MB
16. A5 No Multicollinearity.srt 4.62KB
16. A5 No Multicollinearity.vtt 4.04KB
16. Characteristics of Continuous Distributions.html 158B
16. Classifying the Various Reasons for Absence.mp4 74.61MB
16. Classifying the Various Reasons for Absence.srt 10.03KB
16. Classifying the Various Reasons for Absence.vtt 8.79KB
16. Confidence intervals. Two means. Independent samples (Part 2).mp4 26.82MB
16. Confidence intervals. Two means. Independent samples (Part 2).srt 4.51KB
16. Confidence intervals. Two means. Independent samples (Part 2).vtt 3.98KB
16. Cross Tables and Scatter Plots Exercise.html 81B
16. Predicting with the Standardized Coefficients.mp4 25.97MB
16. Predicting with the Standardized Coefficients.srt 5.59KB
16. Predicting with the Standardized Coefficients.vtt 4.90KB
16. Preparing the Deployment of the Model through a Module.mp4 44.48MB
16. Preparing the Deployment of the Model through a Module.srt 5.62KB
16. Preparing the Deployment of the Model through a Module.vtt 4.90KB
16. Solving Combinations with Separate Sample Spaces.html 158B
16. Test for the mean. Independent samples (Part 1).mp4 29.96MB
16. Test for the mean. Independent samples (Part 1).srt 5.51KB
16. Test for the mean. Independent samples (Part 1).vtt 4.80KB
16. Testing the Model - Exercise.html 87B
16. The Additive Rule.mp4 25.74MB
16. The Additive Rule.srt 2.63KB
16. The Additive Rule.vtt 2.36KB
16. Types of Machine Learning.html 158B
16. What is the Objective Function.html 158B
16. What is the OLS.html 158B
16. Why is Linear Algebra Useful.mp4 144.33MB
16. Why is Linear Algebra Useful.srt 11.79KB
16. Why is Linear Algebra Useful.vtt 10.31KB
17.1 2.7. Mean, median and mode_lesson.xlsx.xlsx 10.49KB
17.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 9.79KB
17.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx.xlsx 10.77KB
17.1 Feature scaling - exercise.html 134B
17.1 Normal Distribution - Exp and Var.pdf.pdf 144.08KB
17.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx 9.17KB
17.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx.xlsx 11.25KB
17. A5 No Multicollinearity.html 158B
17. Combinatorics in Real-Life The Lottery.mp4 39.38MB
17. Combinatorics in Real-Life The Lottery.srt 4.08KB
17. Combinatorics in Real-Life The Lottery.vtt 3.58KB
17. Common Objective Functions L2-norm Loss.mp4 23.27MB
17. Common Objective Functions L2-norm Loss.srt 2.77KB
17. Common Objective Functions L2-norm Loss.vtt 2.44KB
17. Confidence intervals. Two means. Independent samples (Part 2) Exercise.html 81B
17. Continuous Distributions The Normal Distribution.mp4 48.24MB
17. Continuous Distributions The Normal Distribution.srt 4.78KB
17. Continuous Distributions The Normal Distribution.vtt 4.23KB
17. Feature Scaling (Standardization) - Exercise.html 76B
17. Mean, median and mode.mp4 37.12MB
17. Mean, median and mode.srt 5.73KB
17. Mean, median and mode.vtt 5.00KB
17. Real Life Examples of Machine Learning (ML).mp4 36.82MB
17. Real Life Examples of Machine Learning (ML).srt 2.91KB
17. Real Life Examples of Machine Learning (ML).vtt 2.57KB
17. R-Squared.mp4 41.04MB
17. R-Squared.srt 6.58KB
17. R-Squared.vtt 5.79KB
17. Test for the mean. Independent samples (Part 1). Exercise.html 81B
17. The Additive Rule.html 158B
17. Using .concat() in Python.mp4 38.74MB
17. Using .concat() in Python.srt 5.08KB
17. Using .concat() in Python.vtt 4.42KB
18.1 2.7. Mean, median and mode_exercise.xlsx.xlsx 10.87KB
18.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx 9.31KB
18.1 Dealing with categorical data.html 134B
18.2 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx 11.35KB
18. Combinatorics in Real-Life The Lottery.html 158B
18. Common Objective Functions L2-norm Loss.html 158B
18. Confidence intervals. Two means. Independent samples (Part 3).mp4 19.93MB
18. Confidence intervals. Two means. Independent samples (Part 3).srt 1.96KB
18. Confidence intervals. Two means. Independent samples (Part 3).vtt 1.72KB
18. Continuous Distributions The Normal Distribution.html 158B
18. Dealing with Categorical Data - Dummy Variables.mp4 55.66MB
18. Dealing with Categorical Data - Dummy Variables.srt 8.15KB
18. Dealing with Categorical Data - Dummy Variables.vtt 7.11KB
18. EXERCISE - Using .concat() in Python.html 189B
18. Mean, Median and Mode Exercise.html 81B
18. Real Life Examples of Machine Learning (ML).html 158B
18. R-Squared.html 158B
18. Test for the mean. Independent samples (Part 2).mp4 36.39MB
18. Test for the mean. Independent samples (Part 2).srt 5.14KB
18. Test for the mean. Independent samples (Part 2).vtt 4.55KB
18. The Multiplication Law.mp4 42.91MB
18. The Multiplication Law.srt 4.61KB
18. The Multiplication Law.vtt 4.08KB
18. Underfitting and Overfitting.mp4 16.95MB
18. Underfitting and Overfitting.srt 3.46KB
18. Underfitting and Overfitting.vtt 3.05KB
19.1 2.8. Skewness_lesson.xlsx.xlsx 34.63KB
19.1 Dealing with categorical data.html 134B
19.1 Train - Test split explained.html 134B
19. A Recap of Combinatorics.mp4 40.92MB
19. A Recap of Combinatorics.srt 3.77KB
19. A Recap of Combinatorics.vtt 3.29KB
19. Common Objective Functions Cross-Entropy Loss.mp4 37.24MB
19. Common Objective Functions Cross-Entropy Loss.srt 5.26KB
19. Common Objective Functions Cross-Entropy Loss.vtt 4.57KB
19. Continuous Distributions The Standard Normal Distribution.mp4 47.90MB
19. Continuous Distributions The Standard Normal Distribution.srt 5.28KB
19. Continuous Distributions The Standard Normal Distribution.vtt 4.70KB
19. Dealing with Categorical Data - Dummy Variables.html 76B
19. Skewness.mp4 19.40MB
19. Skewness.srt 3.65KB
19. Skewness.vtt 3.20KB
19. SOLUTION - Using .concat() in Python.html 142B
19. Test for the mean. Independent samples (Part 2).html 158B
19. The Multiplication Law.html 158B
19. Train - Test Split Explained.mp4 49.18MB
19. Train - Test Split Explained.srt 9.59KB
19. Train - Test Split Explained.vtt 8.35KB
2.1 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx 146.22KB
2.1 3.17. Practical example. Confidence intervals_exercise.xlsx.xlsx 1.73MB
2.1 3.2. What is a distribution_lesson.xlsx.xlsx 19.46KB
2.1 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx 43.38KB
2.1 A simple example in Python.html 134B
2.1 Basic NN Example (Part 2).html 136B
2.1 Course Notes - Section 6.pdf.pdf 936.42KB
2.1 Creating a Function with a Parameter - Resources.html 134B
2.1 Example of clustering.html 134B
2.1 sklearn - Linear Regression - Practical Example (Part 2).html 134B
2.2 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx 120.28KB
2.2 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx 1.74MB
2.2 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx 44.04KB
2.2 Course notes_inferential statistics.pdf.pdf 382.32KB
2. Analyzing Age vs Probability in Tableau.mp4 80.01MB
2. Analyzing Age vs Probability in Tableau.srt 10.02KB
2. Analyzing Age vs Probability in Tableau.vtt 8.75KB
2. A Note on Installing Packages in Anaconda.html 2.32KB
2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html 158B
2. A Simple Example in Python.mp4 34.70MB
2. A Simple Example in Python.srt 5.80KB
2. A Simple Example in Python.vtt 5.05KB
2. A Simple Example of Clustering.mp4 51.82MB
2. A Simple Example of Clustering.srt 9.59KB
2. A Simple Example of Clustering.vtt 8.28KB
2. Basic NN Example (Part 2).mp4 34.94MB
2. Basic NN Example (Part 2).srt 6.79KB
2. Basic NN Example (Part 2).vtt 5.88KB
2. Business Case Outlining the Solution.mp4 12.21MB
2. Business Case Outlining the Solution.srt 2.52KB
2. Business Case Outlining the Solution.vtt 2.19KB
2. Comparison Operators.html 158B
2. Creating the Targets for the Logistic Regression.mp4 45.79MB
2. Creating the Targets for the Logistic Regression.srt 8.39KB
2. Creating the Targets for the Logistic Regression.vtt 7.36KB
2. Data Science and Business Buzzwords Why are there so many.html 158B
2. Debunking Common Misconceptions.html 158B
2. Dendrogram.mp4 29.06MB
2. Dendrogram.srt 7.36KB
2. Dendrogram.vtt 6.41KB
2. Deploying the 'absenteeism_module' - Part I.mp4 25.48MB
2. Deploying the 'absenteeism_module' - Part I.srt 4.77KB
2. Deploying the 'absenteeism_module' - Part I.vtt 4.20KB
2. Finding the Job - What to Expect and What to Look for.html 158B
2. For Loops.html 158B
2. Fundamentals of Combinatorics.html 158B
2. Fundamentals of Probability Distributions.html 158B
2. Further Reading on Null and Alternative Hypothesis.html 2.29KB
2. How are Going to Approach this Section.mp4 19.41MB
2. How are Going to Approach this Section.srt 2.93KB
2. How are Going to Approach this Section.vtt 2.57KB
2. How to Create a Function with a Parameter.mp4 23.87MB
2. How to Create a Function with a Parameter.srt 4.35KB
2. How to Create a Function with a Parameter.vtt 3.78KB
2. Importing the Absenteeism Data in Python.mp4 23.15MB
2. Importing the Absenteeism Data in Python.srt 3.99KB
2. Importing the Absenteeism Data in Python.vtt 3.48KB
2. Introduction to Neural Networks.html 158B
2. Introduction to Programming.html 158B
2. Introduction to Regression Analysis.html 158B
2. Lists.html 158B
2. MNIST How to Tackle the MNIST.mp4 22.59MB
2. MNIST How to Tackle the MNIST.srt 3.62KB
2. MNIST How to Tackle the MNIST.vtt 3.17KB
2. Multiple Linear Regression.html 158B
2. Necessary Programming Languages and Software Used in Data Science.html 158B
2. Object Oriented Programming.html 158B
2. Population and Sample.html 158B
2. Practical Example Descriptive Statistics Exercise.html 81B
2. Practical Example Hypothesis Testing Exercise.html 81B
2. Practical Example Inferential Statistics Exercise.html 81B
2. Practical Example Linear Regression (Part 2).mp4 46.00MB
2. Practical Example Linear Regression (Part 2).srt 8.03KB
2. Practical Example Linear Regression (Part 2).vtt 7.04KB
2. Probability in Statistics.mp4 77.28MB
2. Probability in Statistics.srt 8.44KB
2. Probability in Statistics.vtt 7.49KB
2. Problems with Gradient Descent.mp4 11.01MB
2. Problems with Gradient Descent.srt 2.83KB
2. Problems with Gradient Descent.vtt 2.50KB
2. Sets and Events.html 158B
2. Some Examples of Clusters.mp4 71.53MB
2. Some Examples of Clusters.srt 6.24KB
2. Some Examples of Clusters.vtt 5.43KB
2. Techniques for Working with Traditional Data.html 158B
2. The Basic Probability Formula.html 158B
2. The Business Task.mp4 39.15MB
2. The Business Task.srt 3.75KB
2. The Business Task.vtt 3.30KB
2. The IF Statement.html 158B
2. The Linear Regression Model.html 158B
2. The Reason behind these Disciplines.html 158B
2. Types of Basic Preprocessing.mp4 11.84MB
2. Types of Basic Preprocessing.srt 1.64KB
2. Types of Basic Preprocessing.vtt 1.46KB
2. Types of Data.html 158B
2. Types of Simple Initializations.mp4 14.31MB
2. Types of Simple Initializations.srt 3.68KB
2. Types of Simple Initializations.vtt 3.23KB
2. Underfitting and Overfitting for Classification.mp4 25.07MB
2. Underfitting and Overfitting for Classification.srt 2.63KB
2. Underfitting and Overfitting for Classification.vtt 2.31KB
2. Using Arithmetic Operators in Python.html 158B
2. Variables.html 158B
2. What's Further out there in terms of Machine Learning.mp4 20.13MB
2. What's Further out there in terms of Machine Learning.srt 2.55KB
2. What's Further out there in terms of Machine Learning.vtt 2.27KB
2. What are Confidence Intervals.html 158B
2. What are Data, Servers, Clients, Requests, and Responses.html 158B
2. What Does the Course Cover.mp4 34.50MB
2. What Does the Course Cover.srt 5.08KB
2. What Does the Course Cover.vtt 4.49KB
2. What is a Deep Net.mp4 29.53MB
2. What is a Deep Net.srt 3.25KB
2. What is a Deep Net.vtt 2.84KB
2. What is a Distribution.mp4 61.59MB
2. What is a Distribution.srt 5.86KB
2. What is a Distribution.vtt 5.07KB
2. What is a Matrix.html 158B
2. What is Machine Learning.html 158B
20.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx.xlsx 10.54KB
20.1 Making predictions.html 134B
20.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx.xlsx 11.39KB
20. A Practical Example of Combinatorics.mp4 134.14MB
20. A Practical Example of Combinatorics.srt 13.97KB
20. A Practical Example of Combinatorics.vtt 12.37KB
20. Bayes' Law.mp4 59.55MB
20. Bayes' Law.srt 7.17KB
20. Bayes' Law.vtt 6.38KB
20. Common Objective Functions Cross-Entropy Loss.html 158B
20. Continuous Distributions The Standard Normal Distribution.html 158B
20. Making Predictions with the Linear Regression.mp4 24.70MB
20. Making Predictions with the Linear Regression.srt 4.45KB
20. Making Predictions with the Linear Regression.vtt 3.87KB
20. Reordering Columns in a Pandas DataFrame in Python.mp4 14.02MB
20. Reordering Columns in a Pandas DataFrame in Python.srt 1.82KB
20. Reordering Columns in a Pandas DataFrame in Python.vtt 1.61KB
20. Skewness.html 158B
20. Test for the mean. Independent samples (Part 2) Exercise.html 81B
21.1 2.8. Skewness_exercise_solution.xlsx.xlsx 19.78KB
21.1 GD-function-example.xlsx.xlsx 42.33KB
21.2 2.8. Skewness_exercise.xlsx.xlsx 9.49KB
21. Bayes' Law.html 158B
21. Continuous Distributions The Students' T Distribution.mp4 27.19MB
21. Continuous Distributions The Students' T Distribution.srt 2.79KB
21. Continuous Distributions The Students' T Distribution.vtt 2.52KB
21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 167B
21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 55.62MB
21. Optimization Algorithm 1-Parameter Gradient Descent.srt 8.47KB
21. Optimization Algorithm 1-Parameter Gradient Descent.vtt 7.43KB
21. Skewness Exercise.html 81B
22.1 2.9. Variance_lesson.xlsx.xlsx 10.08KB
22. Continuous Distributions The Students' T Distribution.html 158B
22. Optimization Algorithm 1-Parameter Gradient Descent.html 158B
22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 462B
22. Variance.mp4 50.95MB
22. Variance.srt 7.54KB
22. Variance.vtt 6.64KB
23.1 2.9. Variance_exercise_solution.xlsx.xlsx 11.05KB
23.1 Creating Checkpoints.html 181B
23.2 2.9. Variance_exercise.xlsx.xlsx 10.83KB
23. Continuous Distributions The Chi-Squared Distribution.mp4 26.34MB
23. Continuous Distributions The Chi-Squared Distribution.srt 2.76KB
23. Continuous Distributions The Chi-Squared Distribution.vtt 2.46KB
23. Creating Checkpoints while Coding in Jupyter.mp4 25.68MB
23. Creating Checkpoints while Coding in Jupyter.srt 3.64KB
23. Creating Checkpoints while Coding in Jupyter.vtt 3.21KB
23. Optimization Algorithm n-Parameter Gradient Descent.mp4 39.43MB
23. Optimization Algorithm n-Parameter Gradient Descent.srt 7.53KB
23. Optimization Algorithm n-Parameter Gradient Descent.vtt 6.62KB
23. Variance Exercise.html 522B
24.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx 10.97KB
24. Continuous Distributions The Chi-Squared Distribution.html 158B
24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137B
24. Optimization Algorithm n-Parameter Gradient Descent.html 158B
24. Standard Deviation and Coefficient of Variation.mp4 45.12MB
24. Standard Deviation and Coefficient of Variation.srt 6.60KB
24. Standard Deviation and Coefficient of Variation.vtt 5.75KB
25. Continuous Distributions The Exponential Distribution.mp4 40.23MB
25. Continuous Distributions The Exponential Distribution.srt 4.14KB
25. Continuous Distributions The Exponential Distribution.vtt 3.65KB
25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html 117B
25. Standard Deviation.html 158B
26.1 2.10. Standard deviation and coefficient of variation_exercise_solution.xlsx.xlsx 12.37KB
26.2 2.10. Standard deviation and coefficient of variation_exercise.xlsx.xlsx 11.30KB
26. Analyzing the Dates from the Initial Data Set.mp4 57.28MB
26. Analyzing the Dates from the Initial Data Set.srt 8.43KB
26. Analyzing the Dates from the Initial Data Set.vtt 7.44KB
26. Continuous Distributions The Exponential Distribution.html 158B
26. Standard Deviation and Coefficient of Variation Exercise.html 81B
27.1 2.11. Covariance_lesson.xlsx.xlsx 24.92KB
27. Continuous Distributions The Logistic Distribution.mp4 47.05MB
27. Continuous Distributions The Logistic Distribution.srt 5.03KB
27. Continuous Distributions The Logistic Distribution.vtt 4.45KB
27. Covariance.mp4 27.49MB
27. Covariance.srt 4.92KB
27. Covariance.vtt 4.30KB
27. Extracting the Month Value from the Date Column.mp4 47.80MB
27. Extracting the Month Value from the Date Column.srt 7.97KB
27. Extracting the Month Value from the Date Column.vtt 6.95KB
28. Continuous Distributions The Logistic Distribution.html 158B
28. Covariance.html 158B
28. Extracting the Day of the Week from the Date Column.mp4 27.96MB
28. Extracting the Day of the Week from the Date Column.srt 4.48KB
28. Extracting the Day of the Week from the Date Column.vtt 3.91KB
29.1 2.11. Covariance_exercise_solution.xlsx.xlsx 29.51KB
29.1 Removing the ā€œDateā€ Column.html 188B
29.2 2.11. Covariance_exercise.xlsx.xlsx 20.23KB
29.2 Preprocessing.html 181B
29. Covariance Exercise.html 81B
29. EXERCISE - Removing the Date Column.html 1.21KB
3.1 3.9.The-z-table.xlsx.xlsx 25.58KB
3.1 Add an Else Statement - Resources.html 134B
3.1 Adjusted R-squared.html 134B
3.1 Another Way to Define a Function - Resources.html 134B
3.1 A simple example of clustering.html 134B
3.1 Basic NN Example (Part 3).html 136B
3.1 Course Notes - Section 2.pdf.pdf 578.08KB
3.1 FAQ_The_Data_Science_Course.pdf.pdf 306.10KB
3.1 Heatmaps.html 134B
3.1 Help Yourself with Methods - Resources.html 134B
3.1 Logical and Identity Operators - Resources.html 134B
3.1 Numbers and Boolean Values - Resources.html 134B
3.1 TensorFlow MNIST Part 1 with Comments.html 159B
3.1 The Double Equality Sign - Resources.html 134B
3.1 While Loops and Incrementing - Resources.html 134B
3.2 3.9. Population variance known, z-score_lesson.xlsx.xlsx 11.21KB
3.2 Countries_exercise.csv.csv 8.27KB
3.2 Download All Resources.html 134B
3. Adjusted R-Squared.mp4 54.84MB
3. Adjusted R-Squared.srt 7.53KB
3. Adjusted R-Squared.vtt 6.57KB
3. A Note on Multicollinearity.html 840B
3. An overview of CNNs.mp4 58.79MB
3. An overview of CNNs.srt 6.44KB
3. An overview of CNNs.vtt 5.66KB
3. A Simple Example of Clustering - Exercise.html 87B
3. Basic NN Example (Part 3).mp4 24.41MB
3. Basic NN Example (Part 3).srt 4.46KB
3. Basic NN Example (Part 3).vtt 3.88KB
3. Checking the Content of the Data Set.mp4 61.90MB
3. Checking the Content of the Data Set.srt 7.05KB
3. Checking the Content of the Data Set.vtt 6.16KB
3. Computing Expected Values.mp4 75.68MB
3. Computing Expected Values.srt 6.69KB
3. Computing Expected Values.vtt 5.90KB
3. Confidence Intervals; Population Variance Known; z-score.mp4 78.20MB
3. Confidence Intervals; Population Variance Known; z-score.srt 9.80KB
3. Confidence Intervals; Population Variance Known; z-score.vtt 8.65KB
3. Correlation vs Regression.mp4 14.73MB
3. Correlation vs Regression.srt 2.10KB
3. Correlation vs Regression.vtt 1.82KB
3. Defining a Function in Python - Part II.mp4 14.79MB
3. Defining a Function in Python - Part II.srt 3.13KB
3. Defining a Function in Python - Part II.vtt 2.70KB
3. Deploying the 'absenteeism_module' - Part II.mp4 54.26MB
3. Deploying the 'absenteeism_module' - Part II.srt 7.54KB
3. Deploying the 'absenteeism_module' - Part II.vtt 6.63KB
3. Difference between Classification and Clustering.mp4 36.15MB
3. Difference between Classification and Clustering.srt 3.28KB
3. Difference between Classification and Clustering.vtt 2.89KB
3. Digging into a Deep Net.mp4 59.37MB
3. Digging into a Deep Net.srt 6.70KB
3. Digging into a Deep Net.vtt 5.84KB
3. Download All Resources and Important FAQ.html 20.77KB
3. EXERCISE - Reasons vs Probability.html 401B
3. Heatmaps.mp4 29.62MB
3. Heatmaps.srt 6.35KB
3. Heatmaps.vtt 5.47KB
3. Introducing the Data Set.mp4 40.86MB
3. Introducing the Data Set.srt 4.15KB
3. Introducing the Data Set.vtt 3.66KB
3. Levels of Measurement.mp4 54.39MB
3. Levels of Measurement.srt 4.55KB
3. Levels of Measurement.vtt 4.03KB
3. Logical and Identity Operators.mp4 30.05MB
3. Logical and Identity Operators.srt 5.78KB
3. Logical and Identity Operators.vtt 4.99KB
3. Logistic vs Logit Function.mp4 86.50MB
3. Logistic vs Logit Function.srt 4.88KB
3. Logistic vs Logit Function.vtt 4.27KB
3. MNIST Relevant Packages.mp4 18.90MB
3. MNIST Relevant Packages.srt 2.12KB
3. MNIST Relevant Packages.vtt 1.89KB
3. Modules and Packages.mp4 8.50MB
3. Modules and Packages.srt 1.26KB
3. Modules and Packages.vtt 1.13KB
3. Momentum.mp4 16.43MB
3. Momentum.srt 3.45KB
3. Momentum.vtt 3.04KB
3. Null vs Alternative Hypothesis.html 158B
3. Numbers and Boolean Values in Python.mp4 17.06MB
3. Numbers and Boolean Values in Python.srt 3.69KB
3. Numbers and Boolean Values in Python.vtt 3.17KB
3. Permutations and How to Use Them.mp4 41.48MB
3. Permutations and How to Use Them.srt 4.07KB
3. Permutations and How to Use Them.vtt 3.61KB
3. Probability in Data Science.mp4 63.49MB
3. Probability in Data Science.srt 6.65KB
3. Probability in Data Science.vtt 5.86KB
3. Real Life Examples of Traditional Data.mp4 29.93MB
3. Real Life Examples of Traditional Data.srt 2.25KB
3. Real Life Examples of Traditional Data.vtt 1.97KB
3. Scalars and Vectors.mp4 33.85MB
3. Scalars and Vectors.srt 3.78KB
3. Scalars and Vectors.vtt 3.30KB
3. Selecting the Inputs for the Logistic Regression.mp4 16.76MB
3. Selecting the Inputs for the Logistic Regression.srt 3.66KB
3. Selecting the Inputs for the Logistic Regression.vtt 3.14KB
3. Simple Linear Regression with sklearn.mp4 34.77MB
3. Simple Linear Regression with sklearn.srt 7.33KB
3. Simple Linear Regression with sklearn.vtt 6.45KB
3. Standardization.mp4 50.98MB
3. Standardization.srt 5.98KB
3. Standardization.vtt 5.29KB
3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 17.15MB
3. State-of-the-Art Method - (Xavier) Glorot Initialization.srt 3.71KB
3. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt 3.24KB
3. TensorFlow Outline and Logic.mp4 47.70MB
3. TensorFlow Outline and Logic.srt 5.21KB
3. TensorFlow Outline and Logic.vtt 4.59KB
3. The Double Equality Sign.mp4 5.99MB
3. The Double Equality Sign.srt 1.83KB
3. The Double Equality Sign.vtt 1.59KB
3. The ELSE Statement.mp4 13.58MB
3. The ELSE Statement.srt 2.78KB
3. The ELSE Statement.vtt 2.45KB
3. The Importance of Working with a Balanced Dataset.mp4 39.41MB
3. The Importance of Working with a Balanced Dataset.srt 4.48KB
3. The Importance of Working with a Balanced Dataset.vtt 3.91KB
3. Training the Model.mp4 28.72MB
3. Training the Model.srt 4.28KB
3. Training the Model.vtt 3.79KB
3. Types of Probability Distributions.mp4 92.30MB
3. Types of Probability Distributions.srt 9.31KB
3. Types of Probability Distributions.vtt 8.31KB
3. Using Methods.mp4 21.96MB
3. Using Methods.srt 3.96KB
3. Using Methods.vtt 3.47KB
3. Ways Sets Can Interact.mp4 45.39MB
3. Ways Sets Can Interact.srt 4.44KB
3. Ways Sets Can Interact.vtt 3.92KB
3. What are Data Connectivity, APIs, and Endpoints.mp4 104.08MB
3. What are Data Connectivity, APIs, and Endpoints.srt 8.55KB
3. What are Data Connectivity, APIs, and Endpoints.vtt 7.56KB
3. What is a Distribution.html 158B
3. What is the difference between Analysis and Analytics.mp4 53.56MB
3. What is the difference between Analysis and Analytics.srt 5.08KB
3. What is the difference between Analysis and Analytics.vtt 4.42KB
3. What is Validation.mp4 32.71MB
3. What is Validation.srt 4.90KB
3. What is Validation.vtt 4.27KB
3. While Loops and Incrementing.mp4 15.44MB
3. While Loops and Incrementing.srt 2.77KB
3. While Loops and Incrementing.vtt 2.42KB
3. Why Python.mp4 75.07MB
3. Why Python.srt 6.97KB
3. Why Python.vtt 6.11KB
30. Analyzing Several Straightforward Columns for this Exercise.mp4 29.51MB
30. Analyzing Several Straightforward Columns for this Exercise.srt 4.34KB
30. Analyzing Several Straightforward Columns for this Exercise.vtt 3.82KB
30. Correlation Coefficient.mp4 29.39MB
30. Correlation Coefficient.srt 4.72KB
30. Correlation Coefficient.vtt 4.15KB
31. Correlation.html 158B
31. Working on Education, Children, and Pets.mp4 39.59MB
31. Working on Education, Children, and Pets.srt 5.68KB
31. Working on Education, Children, and Pets.vtt 4.98KB
32.1 2.12. Correlation_exercise.xlsx.xlsx 29.30KB
32.1 Exercises and solutions.html 170B
32.2 2.12. Correlation_exercise_solution.xlsx.xlsx 29.48KB
32.2 Preprocessing.html 156B
32. Correlation Coefficient Exercise.html 81B
32. Final Remarks of this Section.mp4 21.64MB
32. Final Remarks of this Section.srt 2.48KB
32. Final Remarks of this Section.vtt 2.20KB
4.1 3.9.The-z-table.xlsx.xlsx 25.58KB
4.1 Audiobooks Preprocessing.html 134B
4.1 Basic NN Example (Part 4).html 145B
4.1 Building a logistic regression.html 134B
4.1 Clustering categorical data.html 134B
4.1 Course notes_hypothesis_testing.pdf.pdf 648.20KB
4.1 Create Lists with the range() Function - Resources.html 134B
4.1 Deploying the ā€˜absenteeism_module.html 185B
4.1 Else if, for Brief - Elif - Resources.html 134B
4.1 Shortcuts-for-Jupyter.pdf.pdf 619.17KB
4.1 sklearn - Linear Regression - Practical Example (Part 3).html 134B
4.1 TensorFlow MNIST Part 2 with Comments.html 159B
4.1 Using a Function in Another Function - Resources.html 134B
4.2 3.9. Population variance known, z-score_exercise.xlsx.xlsx 10.83KB
4.3 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx 11.16KB
4. Actual Introduction to TensorFlow.mp4 17.41MB
4. Actual Introduction to TensorFlow.srt 2.18KB
4. Actual Introduction to TensorFlow.vtt 1.92KB
4. Adjusted R-Squared.html 158B
4. Analyzing Reasons vs Probability in Tableau.mp4 86.92MB
4. Analyzing Reasons vs Probability in Tableau.srt 9.55KB
4. Analyzing Reasons vs Probability in Tableau.vtt 8.37KB
4. Basic NN Example (Part 4).mp4 61.14MB
4. Basic NN Example (Part 4).srt 10.87KB
4. Basic NN Example (Part 4).vtt 9.46KB
4. Building a Logistic Regression.mp4 17.10MB
4. Building a Logistic Regression.srt 3.28KB
4. Building a Logistic Regression.vtt 2.89KB
4. Business Case Preprocessing.mp4 103.42MB
4. Business Case Preprocessing.srt 13.46KB
4. Business Case Preprocessing.vtt 11.71KB
4. Clustering Categorical Data.mp4 21.23MB
4. Clustering Categorical Data.srt 3.24KB
4. Clustering Categorical Data.vtt 2.81KB
4. Computing Expected Values.html 158B
4. Confidence Intervals; Population Variance Known; z-score; Exercise.html 81B
4. Correlation vs Regression.html 158B
4. DeepMind and Deep Learning.html 1.05KB
4. Exporting the Obtained Data Set as a .csv.html 998B
4. How to Use a Function within a Function.mp4 8.13MB
4. How to Use a Function within a Function.srt 2.04KB
4. How to Use a Function within a Function.vtt 1.78KB
4. Introducing the Data Set.html 158B
4. Introduction to Terms with Multiple Meanings.mp4 27.85MB
4. Introduction to Terms with Multiple Meanings.srt 4.06KB
4. Introduction to Terms with Multiple Meanings.vtt 3.60KB
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 29.08MB
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.srt 5.94KB
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt 5.22KB
4. Levels of Measurement.html 158B
4. Lists with the range() Function.mp4 11.42MB
4. Lists with the range() Function.srt 2.79KB
4. Lists with the range() Function.vtt 2.45KB
4. Logical and Identity Operators.html 158B
4. Math Prerequisites.mp4 14.56MB
4. Math Prerequisites.srt 4.06KB
4. Math Prerequisites.vtt 3.53KB
4. MNIST Model Outline.mp4 56.38MB
4. MNIST Model Outline.srt 9.07KB
4. MNIST Model Outline.vtt 7.91KB
4. Modules and Packages.html 158B
4. Non-Linearities and their Purpose.mp4 27.69MB
4. Non-Linearities and their Purpose.srt 3.89KB
4. Non-Linearities and their Purpose.vtt 3.38KB
4. Numbers and Boolean Values in Python.html 158B
4. Permutations and How to Use Them.html 158B
4. Practical Example Linear Regression (Part 3).mp4 23.69MB
4. Practical Example Linear Regression (Part 3).srt 4.12KB
4. Practical Example Linear Regression (Part 3).vtt 3.64KB
4. Preprocessing Categorical Data.mp4 18.61MB
4. Preprocessing Categorical Data.srt 2.77KB
4. Preprocessing Categorical Data.vtt 2.42KB
4. Rejection Region and Significance Level.mp4 112.61MB
4. Rejection Region and Significance Level.srt 8.77KB
4. Rejection Region and Significance Level.vtt 7.75KB
4. Scalars and Vectors.html 158B
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 32.00MB
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.srt 6.70KB
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt 5.86KB
4. Standardizing the Data.mp4 20.59MB
4. Standardizing the Data.srt 4.20KB
4. Standardizing the Data.vtt 3.68KB
4. Techniques for Working with Big Data.mp4 75.50MB
4. Techniques for Working with Big Data.srt 5.67KB
4. Techniques for Working with Big Data.vtt 4.96KB
4. The Double Equality Sign.html 158B
4. The ELIF Statement.mp4 33.16MB
4. The ELIF Statement.srt 6.65KB
4. The ELIF Statement.vtt 5.75KB
4. The Normal Distribution.mp4 49.85MB
4. The Normal Distribution.srt 4.90KB
4. The Normal Distribution.vtt 4.32KB
4. Training, Validation, and Test Datasets.mp4 25.19MB
4. Training, Validation, and Test Datasets.srt 3.60KB
4. Training, Validation, and Test Datasets.vtt 3.11KB
4. Training the Model.html 158B
4. Types of Probability Distributions.html 158B
4. Using Methods.html 158B
4. Ways Sets Can Interact.html 158B
4. What are Data Connectivity, APIs, and Endpoints.html 158B
4. What is the difference between Analysis and Analytics.html 158B
4. Why Python.html 158B
5.10 Basic NN Example Exercise 5 Solution.html 149B
5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx 30.77KB
5.1 365_DataScience_Diagram.pdf.pdf 323.08KB
5.1 A Note on Boolean Values - Resources.html 134B
5.1 Basic NN Example Exercise 6 Solution.html 149B
5.1 Basic NN Example with TensorFlow (Part 1).html 154B
5.1 Building a logistic regression.html 134B
5.1 Categorical.csv.csv 10.34KB
5.1 Combining Conditional Statements and Functions - Resources.html 134B
5.1 List Slicing - Resources.html 134B
5.1 Multiple linear regression - exercise.html 134B
5.1 Preprocessing Exercise.html 134B
5.1 Reassign Values - Resources.html 134B
5.1 Strings - Resources.html 134B
5.1 TensorFlow MNIST Part 3 with Comments.html 159B
5.2 Basic NN Example Exercise 3b Solution.html 154B
5.2 Clustering categorical data.html 134B
5.2 Example_bank_data.csv.csv 6.21KB
5.3 Basic NN Example Exercise 2 Solution.html 149B
5.4 Basic NN Example Exercise 3a Solution.html 154B
5.5 Basic NN Example (All Exercises).html 143B
5.6 Basic NN Example Exercise 1 Solution.html 149B
5.7 Basic NN Example Exercise 3d Solution.html 154B
5.8 Basic NN Example Exercise 4 Solution.html 149B
5.9 Basic NN Example Exercise 3c Solution.html 154B
5. Activation Functions.mp4 25.10MB
5. Activation Functions.srt 5.26KB
5. Activation Functions.vtt 4.58KB
5. A Note on Boolean Values.mp4 11.26MB
5. A Note on Boolean Values.srt 2.92KB
5. A Note on Boolean Values.vtt 2.55KB
5. A Note on Normalization.html 733B
5. An Overview of RNNs.mp4 25.26MB
5. An Overview of RNNs.srt 3.71KB
5. An Overview of RNNs.vtt 3.30KB
5. Basic NN Example Exercises.html 1.37KB
5. Binary and One-Hot Encoding.mp4 28.95MB
5. Binary and One-Hot Encoding.srt 4.81KB
5. Binary and One-Hot Encoding.vtt 4.18KB
5. Building a Logistic Regression - Exercise.html 87B
5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 64.52MB
5. Business Analytics, Data Analytics, and Data Science An Introduction.srt 10.63KB
5. Business Analytics, Data Analytics, and Data Science An Introduction.vtt 9.26KB
5. Business Case Preprocessing Exercise.html 383B
5. Categorical Variables - Visualization Techniques.mp4 38.47MB
5. Categorical Variables - Visualization Techniques.srt 6.43KB
5. Categorical Variables - Visualization Techniques.vtt 5.66KB
5. Characteristics of Discrete Distributions.mp4 22.70MB
5. Characteristics of Discrete Distributions.srt 2.46KB
5. Characteristics of Discrete Distributions.vtt 2.17KB
5. Clustering Categorical Data - Exercise.html 87B
5. Conditional Statements and Functions.mp4 15.69MB
5. Conditional Statements and Functions.srt 3.52KB
5. Conditional Statements and Functions.vtt 3.05KB
5. Confidence Interval Clarifications.mp4 57.03MB
5. Confidence Interval Clarifications.srt 5.41KB
5. Confidence Interval Clarifications.vtt 4.82KB
5. Dummies and Variance Inflation Factor - Exercise.html 76B
5. EXERCISE - Transportation Expense vs Probability.html 561B
5. Frequency.mp4 61.74MB
5. Frequency.srt 6.42KB
5. Frequency.vtt 5.66KB
5. Geometrical Representation of the Linear Regression Model.mp4 5.13MB
5. Geometrical Representation of the Linear Regression Model.srt 1.64KB
5. Geometrical Representation of the Linear Regression Model.vtt 1.45KB
5. How to Reassign Values.mp4 4.00MB
5. How to Reassign Values.srt 1.30KB
5. How to Reassign Values.vtt 1.13KB
5. Intersection of Sets.mp4 26.96MB
5. Intersection of Sets.srt 2.47KB
5. Intersection of Sets.vtt 2.19KB
5. Learning Rate Schedules Visualized.mp4 9.11MB
5. Learning Rate Schedules Visualized.srt 2.17KB
5. Learning Rate Schedules Visualized.vtt 1.90KB
5. Linear Algebra and Geometry.mp4 49.79MB
5. Linear Algebra and Geometry.srt 4.10KB
5. Linear Algebra and Geometry.vtt 3.54KB
5. List Slicing.mp4 30.77MB
5. List Slicing.srt 5.55KB
5. List Slicing.vtt 4.83KB
5. Lists with the range() Function.html 158B
5. MNIST Loss and Optimization Algorithm.mp4 25.86MB
5. MNIST Loss and Optimization Algorithm.srt 3.54KB
5. MNIST Loss and Optimization Algorithm.vtt 3.09KB
5. Multiple Linear Regression Exercise.html 76B
5. N-Fold Cross Validation.mp4 20.70MB
5. N-Fold Cross Validation.srt 4.18KB
5. N-Fold Cross Validation.vtt 3.67KB
5. Python Strings.mp4 30.76MB
5. Python Strings.srt 7.45KB
5. Python Strings.vtt 6.46KB
5. Rejection Region and Significance Level.html 158B
5. Simple Operations with Factorials.mp4 36.12MB
5. Simple Operations with Factorials.srt 3.27KB
5. Simple Operations with Factorials.vtt 2.90KB
5. Splitting the Data for Training and Testing.mp4 52.76MB
5. Splitting the Data for Training and Testing.srt 8.10KB
5. Splitting the Data for Training and Testing.vtt 7.07KB
5. Taking a Closer Look at APIs.mp4 115.59MB
5. Taking a Closer Look at APIs.srt 10.39KB
5. Taking a Closer Look at APIs.vtt 9.15KB
5. Techniques for Working with Big Data.html 158B
5. The Normal Distribution.html 158B
5. Types of File Formats, supporting Tensors.mp4 20.35MB
5. Types of File Formats, supporting Tensors.srt 3.45KB
5. Types of File Formats, supporting Tensors.vtt 3.00KB
5. Types of Machine Learning.mp4 45.10MB
5. Types of Machine Learning.srt 5.24KB
5. Types of Machine Learning.vtt 4.62KB
5. What's Regression Analysis - a Quick Refresher.html 2.84KB
5. What is the Standard Library.mp4 18.03MB
5. What is the Standard Library.srt 3.57KB
5. What is the Standard Library.vtt 3.15KB
5. Why Jupyter.mp4 44.32MB
5. Why Jupyter.srt 4.64KB
5. Why Jupyter.vtt 4.10KB
6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx 10.38KB
6.1 Basic NN Example with TensorFlow (Part 2).html 154B
6.1 Creating a Data Provider (Class).html 134B
6.1 Creating Functions Containing a Few Arguments - Resources.html 134B
6.1 How to choose the number of clusters.html 134B
6.1 Simple linear regression with sklearn.html 134B
6.1 sklearn - Linear Regression - Practical Example (Part 4).html 134B
6.1 TensorFlow MNIST Part 4 with Comments.html 159B
6.1 Tuples - Resources.html 134B
6.1 Use Conditional Statements and Loops Together - Resources.html 134B
6. Activation Functions Softmax Activation.mp4 25.93MB
6. Activation Functions Softmax Activation.srt 4.46KB
6. Activation Functions Softmax Activation.vtt 3.89KB
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 26.36MB
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).srt 5.21KB
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt 4.57KB
6. Analyzing Transportation Expense vs Probability in Tableau.mp4 68.54MB
6. Analyzing Transportation Expense vs Probability in Tableau.srt 7.21KB
6. Analyzing Transportation Expense vs Probability in Tableau.vtt 6.31KB
6. An Invaluable Coding Tip.mp4 23.05MB
6. An Invaluable Coding Tip.srt 3.21KB
6. An Invaluable Coding Tip.vtt 2.78KB
6. A Note on Boolean Values.html 158B
6. An Overview of non-NN Approaches.mp4 44.78MB
6. An Overview of non-NN Approaches.srt 5.12KB
6. An Overview of non-NN Approaches.vtt 4.56KB
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 38.50MB
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.srt 7.36KB
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt 6.47KB
6. Business Analytics, Data Analytics, and Data Science An Introduction.html 158B
6. Calculating the Accuracy of the Model.mp4 43.91MB
6. Calculating the Accuracy of the Model.srt 5.19KB
6. Calculating the Accuracy of the Model.vtt 4.51KB
6. Categorical Variables - Visualization Techniques.html 158B
6. Characteristics of Discrete Distributions.html 158B
6. Conditional Statements and Loops.mp4 16.09MB
6. Conditional Statements and Loops.srt 3.59KB
6. Conditional Statements and Loops.vtt 3.15KB
6. Creating a Data Provider.mp4 76.34MB
6. Creating a Data Provider.srt 7.75KB
6. Creating a Data Provider.vtt 6.80KB
6. Early Stopping or When to Stop Training.mp4 24.17MB
6. Early Stopping or When to Stop Training.srt 6.86KB
6. Early Stopping or When to Stop Training.vtt 6.01KB
6. Fitting the Model and Assessing its Accuracy.mp4 41.62MB
6. Fitting the Model and Assessing its Accuracy.srt 7.38KB
6. Fitting the Model and Assessing its Accuracy.vtt 6.41KB
6. Frequency.html 158B
6. Functions Containing a Few Arguments.mp4 7.58MB
6. Functions Containing a Few Arguments.srt 1.31KB
6. Functions Containing a Few Arguments.vtt 1.13KB
6. Geometrical Representation of the Linear Regression Model.html 158B
6. How to Choose the Number of Clusters.mp4 44.13MB
6. How to Choose the Number of Clusters.srt 7.37KB
6. How to Choose the Number of Clusters.vtt 6.43KB
6. How to Reassign Values.html 158B
6. Intersection of Sets.html 158B
6. Linear Algebra and Geometry.html 158B
6. Practical Example Linear Regression (Part 4).mp4 56.04MB
6. Practical Example Linear Regression (Part 4).srt 11.49KB
6. Practical Example Linear Regression (Part 4).vtt 10.02KB
6. Python Strings.html 158B
6. Real Life Examples of Big Data.mp4 22.04MB
6. Real Life Examples of Big Data.srt 1.88KB
6. Real Life Examples of Big Data.vtt 1.64KB
6. Simple Linear Regression with sklearn - Exercise.html 76B
6. Simple Operations with Factorials.html 158B
6. Student's T Distribution.mp4 35.43MB
6. Student's T Distribution.srt 4.14KB
6. Student's T Distribution.vtt 3.68KB
6. Taking a Closer Look at APIs.html 158B
6. Test for Significance of the Model (F-Test).mp4 16.43MB
6. Test for Significance of the Model (F-Test).srt 2.56KB
6. Test for Significance of the Model (F-Test).vtt 2.23KB
6. The Standard Normal Distribution.mp4 22.50MB
6. The Standard Normal Distribution.srt 3.94KB
6. The Standard Normal Distribution.vtt 3.45KB
6. Tuples.mp4 16.67MB
6. Tuples.srt 3.39KB
6. Tuples.vtt 2.96KB
6. Type I Error and Type II Error.mp4 43.94MB
6. Type I Error and Type II Error.srt 5.67KB
6. Type I Error and Type II Error.vtt 4.90KB
6. Types of Machine Learning.html 158B
6. Using a Statistical Approach towards the Solution to the Exercise.mp4 20.18MB
6. Using a Statistical Approach towards the Solution to the Exercise.srt 2.80KB
6. Using a Statistical Approach towards the Solution to the Exercise.vtt 2.46KB
6. What is the Standard Library.html 158B
6. Why Jupyter.html 158B
7.1 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx 15.24KB
7.1 365_DataScience.png.png 6.93MB
7.1 Add Comments - Resources.html 134B
7.1 All In - Conditional Statements, Functions, and Loops - Resources.html 134B
7.1 Arrays in Python Notebook.html 181B
7.1 Basic NN Example with TensorFlow (Part 3).html 154B
7.1 Dictionaries - Resources.html 134B
7.1 How to choose the number of clusters.html 134B
7.1 Notable Built-In Functions in Python - Resources.html 134B
7.1 TensorFlow Business Case Model Outline.html 134B
7.1 TensorFlow MNIST Part 5 with Comments.html 159B
7.2 365_DataScience_Diagram.pdf.pdf 323.08KB
7.2 Countries_exercise.csv.csv 8.27KB
7.2 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf 289.12KB
7.3 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx 41.11KB
7. Adam (Adaptive Moment Estimation).mp4 22.35MB
7. Adam (Adaptive Moment Estimation).srt 3.33KB
7. Adam (Adaptive Moment Estimation).vtt 2.92KB
7. Add Comments.mp4 5.00MB
7. Add Comments.srt 1.71KB
7. Add Comments.vtt 1.49KB
7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 26.68MB
7. Arrays in Python - A Convenient Way To Represent Matrices.srt 6.13KB
7. Arrays in Python - A Convenient Way To Represent Matrices.vtt 5.31KB
7. Backpropagation.mp4 34.95MB
7. Backpropagation.srt 4.47KB
7. Backpropagation.vtt 3.91KB
7. Basic NN Example with TF Loss Function and Gradient Descent.mp4 32.51MB
7. Basic NN Example with TF Loss Function and Gradient Descent.srt 4.83KB
7. Basic NN Example with TF Loss Function and Gradient Descent.vtt 4.21KB
7. Built-in Functions in Python.mp4 22.02MB
7. Built-in Functions in Python.srt 4.21KB
7. Built-in Functions in Python.vtt 3.68KB
7. Business Case Model Outline.mp4 53.13MB
7. Business Case Model Outline.srt 6.94KB
7. Business Case Model Outline.vtt 6.07KB
7. Business Intelligence (BI) Techniques.mp4 89.94MB
7. Business Intelligence (BI) Techniques.srt 8.63KB
7. Business Intelligence (BI) Techniques.vtt 7.57KB
7. Categorical Variables Exercise.html 81B
7. Communication between Software Products through Text Files.mp4 60.34MB
7. Communication between Software Products through Text Files.srt 5.47KB
7. Communication between Software Products through Text Files.vtt 4.80KB
7. Conditional Statements, Functions, and Loops.mp4 9.48MB
7. Conditional Statements, Functions, and Loops.srt 2.41KB
7. Conditional Statements, Functions, and Loops.vtt 2.09KB
7. Continuing with BI, ML, and AI.mp4 108.99MB
7. Continuing with BI, ML, and AI.srt 11.88KB
7. Continuing with BI, ML, and AI.vtt 10.43KB
7. Creating a Summary Table with the Coefficients and Intercept.mp4 38.87MB
7. Creating a Summary Table with the Coefficients and Intercept.srt 6.63KB
7. Creating a Summary Table with the Coefficients and Intercept.vtt 5.77KB
7. Dictionaries.mp4 25.05MB
7. Dictionaries.srt 4.21KB
7. Dictionaries.vtt 3.63KB
7. Discrete Distributions The Uniform Distribution.mp4 24.40MB
7. Discrete Distributions The Uniform Distribution.srt 2.74KB
7. Discrete Distributions The Uniform Distribution.vtt 2.43KB
7. Download All Resources.html 458B
7. Dropping a Column from a DataFrame in Python.mp4 61.76MB
7. Dropping a Column from a DataFrame in Python.srt 7.81KB
7. Dropping a Column from a DataFrame in Python.vtt 6.81KB
7. Dummy Variables - Exercise.html 713B
7. Events and Their Complements.mp4 59.16MB
7. Events and Their Complements.srt 6.72KB
7. Events and Their Complements.vtt 5.96KB
7. How to Choose the Number of Clusters - Exercise.html 87B
7. Importing Modules in Python.mp4 19.94MB
7. Importing Modules in Python.srt 4.82KB
7. Importing Modules in Python.vtt 4.17KB
7. Installing Python and Jupyter.mp4 51.02MB
7. Installing Python and Jupyter.srt 8.84KB
7. Installing Python and Jupyter.vtt 7.78KB
7. MNIST Batching and Early Stopping.mp4 12.85MB
7. MNIST Batching and Early Stopping.srt 2.93KB
7. MNIST Batching and Early Stopping.vtt 2.56KB
7. Multiple Linear Regression with sklearn.mp4 20.07MB
7. Multiple Linear Regression with sklearn.srt 4.17KB
7. Multiple Linear Regression with sklearn.vtt 3.67KB
7. OLS Assumptions.mp4 21.85MB
7. OLS Assumptions.srt 3.04KB
7. OLS Assumptions.vtt 2.67KB
7. Python Packages Installation.mp4 40.58MB
7. Python Packages Installation.srt 5.62KB
7. Python Packages Installation.vtt 4.89KB
7. Solving Variations with Repetition.mp4 34.00MB
7. Solving Variations with Repetition.srt 3.47KB
7. Solving Variations with Repetition.vtt 3.09KB
7. Student's T Distribution.html 158B
7. The Linear Model (Linear Algebraic Version).mp4 28.44MB
7. The Linear Model (Linear Algebraic Version).srt 3.88KB
7. The Linear Model (Linear Algebraic Version).vtt 3.43KB
7. The Standard Normal Distribution.html 158B
7. Type I Error and Type II Error.html 158B
7. Understanding Logistic Regression Tables.mp4 30.55MB
7. Understanding Logistic Regression Tables.srt 5.56KB
7. Understanding Logistic Regression Tables.vtt 4.84KB
7. Union of Sets.mp4 57.19MB
7. Union of Sets.srt 5.53KB
7. Union of Sets.vtt 4.96KB
8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx 11.44KB
8.1 3.11. The t-table.xlsx.xlsx 15.85KB
8.1 3.4.Standard-normal-distribution-exercise.xlsx.xlsx 11.99KB
8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx 10.96KB
8.1 Basic NN Example with TensorFlow (Complete).html 156B
8.1 First regression in Python.html 134B
8.1 Iterating over Dictionaries - Resources.html 134B
8.1 sklearn - Linear Regression - Practical Example (Part 5).html 134B
8.1 TensorFlow Business Case Optimization.html 134B
8.1 TensorFlow MNIST Part 6 with Comments.html 159B
8.1 Tensors Notebook.html 148B
8.1 Understanding logistic regression.html 134B
8.2 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx 10.78KB
8.2 3.4.Standard-normal-distribution-exercise-solution.xlsx.xlsx 24.04KB
8.2 Bank_data.csv.csv 19.55KB
8. Add Comments.html 158B
8. Backpropagation picture.mp4 19.50MB
8. Backpropagation picture.srt 3.98KB
8. Backpropagation picture.vtt 3.44KB
8. Basic NN Example with TF Model Output.mp4 37.40MB
8. Basic NN Example with TF Model Output.srt 7.93KB
8. Basic NN Example with TF Model Output.vtt 6.87KB
8. Business Case Optimization.mp4 41.52MB
8. Business Case Optimization.srt 6.60KB
8. Business Case Optimization.vtt 5.76KB
8. Business Intelligence (BI) Techniques.html 158B
8. Calculating the Adjusted R-Squared in sklearn.mp4 30.88MB
8. Calculating the Adjusted R-Squared in sklearn.srt 6.27KB
8. Calculating the Adjusted R-Squared in sklearn.vtt 5.54KB
8. Communication between Software Products through Text Files.html 158B
8. Confidence Intervals; Population Variance Unknown; t-score.mp4 32.20MB
8. Confidence Intervals; Population Variance Unknown; t-score.srt 5.71KB
8. Confidence Intervals; Population Variance Unknown; t-score.vtt 5.00KB
8. Continuing with BI, ML, and AI.html 158B
8. Dictionaries.html 158B
8. Discrete Distributions The Uniform Distribution.html 158B
8. Events and Their Complements.html 158B
8. EXERCISE - Dropping a Column from a DataFrame in Python.html 866B
8. First Regression in Python.mp4 44.56MB
8. First Regression in Python.srt 7.91KB
8. First Regression in Python.vtt 6.91KB
8. How to Iterate over Dictionaries.mp4 16.99MB
8. How to Iterate over Dictionaries.srt 3.88KB
8. How to Iterate over Dictionaries.vtt 3.34KB
8. Importing Modules in Python.html 158B
8. Interpreting the Coefficients for Our Problem.mp4 52.37MB
8. Interpreting the Coefficients for Our Problem.srt 7.89KB
8. Interpreting the Coefficients for Our Problem.vtt 6.93KB
8. MNIST Learning.mp4 46.68MB
8. MNIST Learning.srt 10.20KB
8. MNIST Learning.vtt 8.89KB
8. Numerical Variables - Frequency Distribution Table.mp4 25.85MB
8. Numerical Variables - Frequency Distribution Table.srt 4.36KB
8. Numerical Variables - Frequency Distribution Table.vtt 3.83KB
8. OLS Assumptions.html 158B
8. Practical Example Linear Regression (Part 5).mp4 57.88MB
8. Practical Example Linear Regression (Part 5).srt 10.59KB
8. Practical Example Linear Regression (Part 5).vtt 9.28KB
8. Pros and Cons of K-Means Clustering.mp4 37.70MB
8. Pros and Cons of K-Means Clustering.srt 4.62KB
8. Pros and Cons of K-Means Clustering.vtt 4.01KB
8. Python Functions.html 158B
8. Solving Variations with Repetition.html 158B
8. Test for the Mean. Population Variance Known.mp4 54.23MB
8. Test for the Mean. Population Variance Known.srt 8.15KB
8. Test for the Mean. Population Variance Known.vtt 7.12KB
8. The Linear Model.html 158B
8. The Standard Normal Distribution Exercise.html 81B
8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 13.79MB
8. Understanding Jupyter's Interface - the Notebook Dashboard.srt 3.74KB
8. Understanding Jupyter's Interface - the Notebook Dashboard.vtt 3.25KB
8. Understanding Logistic Regression Tables - Exercise.html 87B
8. Union of Sets.html 158B
8. What is a Tensor.mp4 22.53MB
8. What is a Tensor.srt 3.61KB
8. What is a Tensor.vtt 3.17KB
9.1 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx 10.62KB
9.1 365_DataScience.png.png 6.93MB
9.1 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx 11.03KB
9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf 182.36KB
9.1 Basic NN Example with TensorFlow Exercise 2.4 Solution.html 162B
9.1 Calculating the Adjusted R-Squared.html 134B
9.1 First regression in Python - Exercise.html 134B
9.1 Line Continuation - Resources.html 134B
9.1 Logistic Regression prior to Custom Scaler.html 219B
9.1 TensorFlow Business Case Interpretation.html 134B
9.1 TensorFlow MNIST Complete Code with Comments.html 152B
9.2 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx 11.10KB
9.2 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx 11.22KB
9.2 Basic NN Example with TensorFlow Exercise 2.2 Solution.html 162B
9.3 Basic NN Example with TensorFlow Exercise 2.1 Solution.html 162B
9.4 Basic NN Example with TensorFlow Exercise 3 Solution.html 160B
9.5 Basic NN Example with TensorFlow Exercise 4 Solution.html 160B
9.6 Basic NN Example with TensorFlow Exercise 2.3 Solution.html 162B
9.7 Basic NN Example with TensorFlow Exercise 1 Solution.html 160B
9.8 Basic NN Example with TensorFlow (All Exercises).html 154B
9. A1 Linearity.mp4 12.61MB
9. A1 Linearity.srt 2.36KB
9. A1 Linearity.vtt 2.07KB
9. A Breakdown of our Data Science Infographic.mp4 67.74MB
9. A Breakdown of our Data Science Infographic.srt 5.11KB
9. A Breakdown of our Data Science Infographic.vtt 4.45KB
9. Backpropagation - A Peek into the Mathematics of Optimization.html 539B
9. Basic NN Example with TF Exercises.html 1.59KB
9. Business Case Interpretation.mp4 25.74MB
9. Business Case Interpretation.srt 2.94KB
9. Business Case Interpretation.vtt 2.60KB
9. Calculating the Adjusted R-Squared in sklearn - Exercise.html 76B
9. Central Limit Theorem.mp4 62.88MB
9. Central Limit Theorem.srt 5.64KB
9. Central Limit Theorem.vtt 4.95KB
9. Confidence Intervals; Population Variance Unknown; t-score; Exercise.html 81B
9. Discrete Distributions The Bernoulli Distribution.mp4 34.14MB
9. Discrete Distributions The Bernoulli Distribution.srt 3.86KB
9. Discrete Distributions The Bernoulli Distribution.vtt 3.48KB
9. First Regression in Python Exercise.html 1.33KB
9. Linear Regression - Exercise.html 503B
9. MNIST Results and Testing.mp4 62.77MB
9. MNIST Results and Testing.srt 8.17KB
9. MNIST Results and Testing.vtt 7.15KB
9. Mutually Exclusive Sets.mp4 25.39MB
9. Mutually Exclusive Sets.srt 2.52KB
9. Mutually Exclusive Sets.vtt 2.24KB
9. Numerical Variables - Frequency Distribution Table.html 158B
9. Prerequisites for Coding in the Jupyter Notebooks.mp4 30.59MB
9. Prerequisites for Coding in the Jupyter Notebooks.srt 7.79KB
9. Prerequisites for Coding in the Jupyter Notebooks.vtt 6.80KB
9. Real Life Examples of Business Intelligence (BI).mp4 29.54MB
9. Real Life Examples of Business Intelligence (BI).srt 2.13KB
9. Real Life Examples of Business Intelligence (BI).vtt 1.89KB
9. Software Integration - Explained.mp4 72.65MB
9. Software Integration - Explained.srt 6.82KB
9. Software Integration - Explained.vtt 6.00KB
9. SOLUTION - Dropping a Column from a DataFrame in Python.html 113B
9. Solving Variations without Repetition.mp4 43.14MB
9. Solving Variations without Repetition.srt 4.53KB
9. Solving Variations without Repetition.vtt 4.00KB
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 41.20MB
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).srt 5.03KB
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt 4.41KB
9. Test for the Mean. Population Variance Known Exercise.html 81B
9. The Linear Model with Multiple Inputs.mp4 25.12MB
9. The Linear Model with Multiple Inputs.srt 3.10KB
9. The Linear Model with Multiple Inputs.vtt 2.74KB
9. To Standardize or not to Standardize.mp4 30.11MB
9. To Standardize or not to Standardize.srt 5.89KB
9. To Standardize or not to Standardize.vtt 5.14KB
9. Understanding Line Continuation.mp4 2.35MB
9. Understanding Line Continuation.srt 1.14KB
9. Understanding Line Continuation.vtt 1.00KB
9. What do the Odds Actually Mean.mp4 32.28MB
9. What do the Odds Actually Mean.srt 4.79KB
9. What do the Odds Actually Mean.vtt 4.18KB
9. What is a Tensor.html 158B
Discuss.FTUForum.com.url 294B
FreeCoursesOnline.Me.url 286B
FTUApps.com.url 239B
FTUForum.com.url 328B
How you can help Team-FTU.txt 237B
Distribution statistics by country
India (IN) 3
Nepal (NP) 2
Morocco (MA) 1
United Kingdom (GB) 1
Montenegro (ME) 1
Pakistan (PK) 1
Brazil (BR) 1
Russia (RU) 1
South Africa (ZA) 1
Total 12
IP List List of IP addresses which were distributed this torrent