Torrent Info
Title 2021 Python for Machine Learning & Data Science Masterclass
Category
Size 10.59GB

Files List
Please note that this page does not hosts or makes available any of the listed filenames. You cannot download any of those files from here.
[TGx]Downloaded from torrentgalaxy.to .txt 585B
0 16B
1 18B
1.1 11-Logistic-Regression-Models.zip 2.02MB
1.1 12-K-Nearest-Neighbors.zip 1.35MB
1.1 13-Support-Vector-Machines.zip 1.51MB
1.1 14-Decision-Trees.zip 1.79MB
1.1 data_banknote_authentication.csv 45.38KB
1.2 15-Random-Forests.zip 3.94MB
1. A note from Jose on Feature Engineering and Data Preparation.html 990B
1. Capstone Project Overview.mp4 93.20MB
1. Capstone Project Overview.srt 20.60KB
1. EARLY BIRD INFO.html 550B
1. Early Bird Note on Downloading .zip for Logistic Regression Notes.html 523B
1. Introduction to KNN Section.mp4 11.41MB
1. Introduction to KNN Section.srt 3.63KB
1. Introduction to Linear Regression Section.mp4 8.87MB
1. Introduction to Linear Regression Section.srt 2.68KB
1. Introduction to Machine Learning Overview Section.mp4 29.73MB
1. Introduction to Machine Learning Overview Section.srt 8.58KB
1. Introduction to Matplotlib.mp4 21.57MB
1. Introduction to Matplotlib.srt 6.72KB
1. Introduction to NumPy.mp4 11.28MB
1. Introduction to NumPy.srt 3.01KB
1. Introduction to Pandas.mp4 21.01MB
1. Introduction to Pandas.srt 7.24KB
1. Introduction to Random Forests Section.mp4 9.49MB
1. Introduction to Random Forests Section.srt 2.81KB
1. Introduction to Seaborn.mp4 20.00MB
1. Introduction to Seaborn.srt 6.51KB
1. Introduction to Support Vector Machines.mp4 9.39MB
1. Introduction to Support Vector Machines.srt 2.30KB
1. Introduction to Tree Based Methods.mp4 7.43MB
1. Introduction to Tree Based Methods.srt 2.21KB
1. Machine Learning Pathway.mp4 40.54MB
1. Machine Learning Pathway.srt 15.79KB
1. OPTIONAL Python Crash Course.html 472B
1. Section Overview and Introduction.mp4 20.53MB
1. Section Overview and Introduction.srt 5.05KB
10 1.22MB
10. Classification Metrics - Precison, Recall, F1-Score.mp4 33.06MB
10. Classification Metrics - Precison, Recall, F1-Score.srt 8.34KB
10. Coding Regression with Random Forest Regressor - Part Three - Polynomials.mp4 60.02MB
10. Coding Regression with Random Forest Regressor - Part Three - Polynomials.srt 15.34KB
10. Linear Regression - Residual Plots.mp4 59.52MB
10. Linear Regression - Residual Plots.srt 20.22KB
10. Matplotlib Exercise Questions Overview.mp4 50.78MB
10. Matplotlib Exercise Questions Overview.srt 9.33KB
10. Pandas - Useful Methods - Apply on Single Column.mp4 73.05MB
10. Pandas - Useful Methods - Apply on Single Column.srt 20.23KB
10. Seaborn - Comparison Plots - Coding with Seaborn.mp4 70.16MB
10. Seaborn - Comparison Plots - Coding with Seaborn.srt 15.70KB
10. Support Vector Machine Project Solutions.mp4 108.85MB
10. Support Vector Machine Project Solutions.srt 25.94KB
100 1.41MB
101 1.43MB
102 400.81KB
103 1.01MB
104 1.65MB
105 398.27KB
106 719.74KB
107 1.09MB
108 1.23MB
109 1.76MB
11 1.05MB
11. Classification Metrics - ROC Curves.mp4 34.29MB
11. Classification Metrics - ROC Curves.srt 11.06KB
11. Coding Regression with Random Forest Regressor - Part Four - Advanced Models.mp4 59.02MB
11. Coding Regression with Random Forest Regressor - Part Four - Advanced Models.srt 15.45KB
11. Linear Regression - Model Deployment and Coefficient Interpretation.mp4 88.19MB
11. Linear Regression - Model Deployment and Coefficient Interpretation.srt 25.62KB
11. Matplotlib Exercise Questions - Solutions.mp4 123.11MB
11. Matplotlib Exercise Questions - Solutions.srt 24.53KB
11. Pandas - Useful Methods - Apply on Multiple Columns.mp4 98.55MB
11. Pandas - Useful Methods - Apply on Multiple Columns.srt 25.93KB
11. Seaborn Grid Plots.mp4 91.62MB
11. Seaborn Grid Plots.srt 20.50KB
110 1.97MB
111 985.71KB
112 949.06KB
113 1.46MB
114 1.54MB
115 1.56MB
116 116.89KB
117 948.56KB
118 1.32MB
119 1.53MB
12 889.95KB
12. Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation.mp4 74.21MB
12. Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation.srt 23.43KB
12. Pandas - Useful Methods - Statistical Information and Sorting.mp4 85.65MB
12. Pandas - Useful Methods - Statistical Information and Sorting.srt 23.40KB
12. Polynomial Regression - Theory and Motivation.mp4 44.24MB
12. Polynomial Regression - Theory and Motivation.srt 11.21KB
12. Seaborn - Matrix Plots.mp4 71.25MB
12. Seaborn - Matrix Plots.srt 21.09KB
120 1.68MB
121 1.98MB
122 200.96KB
123 320.47KB
124 320.47KB
125 345.82KB
126 760.24KB
127 1.42MB
128 1.56MB
129 1.71MB
13 133.09KB
13. Missing Data - Overview.mp4 53.18MB
13. Missing Data - Overview.srt 18.36KB
13. Multi-Class Classification with Logistic Regression - Part One - Data and EDA.mp4 44.03MB
13. Multi-Class Classification with Logistic Regression - Part One - Data and EDA.srt 12.01KB
13. Polynomial Regression - Creating Polynomial Features.mp4 52.62MB
13. Polynomial Regression - Creating Polynomial Features.srt 16.39KB
13. Seaborn Plot Exercises Overview.mp4 49.91MB
13. Seaborn Plot Exercises Overview.srt 11.26KB
130 1.83MB
131 1.90MB
132 675.41KB
133 965.98KB
134 1.95MB
135 329.06KB
136 594.42KB
137 838.84KB
138 280.27KB
139 495.38KB
14 1.63MB
14. Missing Data - Pandas Operations.mp4 97.86MB
14. Missing Data - Pandas Operations.srt 27.41KB
14. Multi-Class Classification with Logistic Regression - Part Two - Model.mp4 110.96MB
14. Multi-Class Classification with Logistic Regression - Part Two - Model.srt 23.82KB
14. Polynomial Regression - Training and Evaluation.mp4 48.87MB
14. Polynomial Regression - Training and Evaluation.srt 14.17KB
14. Seaborn Plot Exercises Solutions.mp4 110.60MB
14. Seaborn Plot Exercises Solutions.srt 22.40KB
140 1.06MB
141 100.75KB
142 397.38KB
143 531.26KB
144 1.74MB
145 198.46KB
146 925.90KB
147 1.45MB
148 1.63MB
149 252.08KB
15 774.24KB
15. Bias Variance Trade-Off.mp4 43.04MB
15. Bias Variance Trade-Off.srt 15.94KB
15. GroupBy Operations - Part One.mp4 93.11MB
15. GroupBy Operations - Part One.srt 21.41KB
15. Logistic Regression Exercise Project Overview.mp4 35.80MB
15. Logistic Regression Exercise Project Overview.srt 6.49KB
150 662.13KB
151 850.24KB
152 1.75MB
153 143.49KB
154 444.46KB
155 1010.56KB
156 1.47MB
157 2.00MB
158 729.46KB
159 887.65KB
16 968.53KB
16. GroupBy Operations - Part Two - MultiIndex.mp4 105.86MB
16. GroupBy Operations - Part Two - MultiIndex.srt 20.86KB
16. Logistic Regression Project Exercise - Solutions.mp4 168.39MB
16. Logistic Regression Project Exercise - Solutions.srt 35.59KB
16. Polynomial Regression - Choosing Degree of Polynomial.mp4 72.93MB
16. Polynomial Regression - Choosing Degree of Polynomial.srt 19.88KB
160 961.79KB
161 495.36KB
162 601.27KB
163 733.36KB
164 521.05KB
165 629.59KB
166 1.13MB
167 582.55KB
168 1016.18KB
169 66.51KB
17 1.04MB
17. Combining DataFrames - Concatenation.mp4 50.51MB
17. Combining DataFrames - Concatenation.srt 15.02KB
17. Polynomial Regression - Model Deployment.mp4 28.94MB
17. Polynomial Regression - Model Deployment.srt 8.38KB
18 1.40MB
18. Combining DataFrames - Inner Merge.mp4 53.61MB
18. Combining DataFrames - Inner Merge.srt 18.52KB
18. Regularization Overview.mp4 33.34MB
18. Regularization Overview.srt 10.33KB
19 273.01KB
19. Combining DataFrames - Left and Right Merge.mp4 27.90MB
19. Combining DataFrames - Left and Right Merge.srt 9.10KB
19. Feature Scaling.mp4 53.97MB
19. Feature Scaling.srt 14.83KB
2 20B
2.1 UNZIP_ME_FOR_NOTEBOOKS_V4.zip 35.69MB
2. Capstone Project Solutions - Part One.mp4 116.95MB
2. Capstone Project Solutions - Part One.srt 26.84KB
2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.mp4 24.55MB
2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.srt 7.17KB
2. Cross Validation - Test Train Split.mp4 60.46MB
2. Cross Validation - Test Train Split.srt 17.43KB
2. Decision Tree - History.mp4 51.89MB
2. Decision Tree - History.srt 13.15KB
2. History of Support Vector Machines.mp4 31.42MB
2. History of Support Vector Machines.srt 6.52KB
2. Introduction to Feature Engineering and Data Preparation.mp4 78.11MB
2. Introduction to Feature Engineering and Data Preparation.srt 24.10KB
2. Introduction to Logistic Regression Section.mp4 31.68MB
2. Introduction to Logistic Regression Section.srt 8.39KB
2. KNN Classification - Theory and Intuition.mp4 50.19MB
2. KNN Classification - Theory and Intuition.srt 16.92KB
2. Linear Regression - Algorithm History.mp4 54.71MB
2. Linear Regression - Algorithm History.srt 13.09KB
2. Matplotlib Basics.mp4 53.61MB
2. Matplotlib Basics.srt 19.64KB
2. NumPy Arrays.mp4 109.63MB
2. NumPy Arrays.srt 31.91KB
2. Python Crash Course - Part One.mp4 29.52MB
2. Python Crash Course - Part One.srt 24.63KB
2. Random Forests - History and Motivation.mp4 44.91MB
2. Random Forests - History and Motivation.srt 17.22KB
2. Scatterplots with Seaborn.mp4 128.61MB
2. Scatterplots with Seaborn.srt 29.72KB
2. Series - Part One.mp4 38.47MB
2. Series - Part One.srt 13.39KB
2. Why Machine Learning.mp4 44.77MB
2. Why Machine Learning.srt 14.66KB
20 376.13KB
20. Combining DataFrames - Outer Merge.mp4 39.89MB
20. Combining DataFrames - Outer Merge.srt 14.57KB
20. Introduction to Cross Validation.mp4 62.58MB
20. Introduction to Cross Validation.srt 19.81KB
21 1.15MB
21. Pandas - Text Methods for String Data.mp4 75.69MB
21. Pandas - Text Methods for String Data.srt 23.95KB
21. Regularization Data Setup.mp4 34.44MB
21. Regularization Data Setup.srt 12.42KB
22 1.35MB
22. L2 Regularization - Ridge Regression Theory.mp4 61.09MB
22. L2 Regularization - Ridge Regression Theory.srt 20.72KB
22. Pandas - Time Methods for Date and Time Data.mp4 101.92MB
22. Pandas - Time Methods for Date and Time Data.srt 31.72KB
23 139.29KB
23. L2 Regularization - Ridge Regression - Python Implementation.mp4 96.42MB
23. L2 Regularization - Ridge Regression - Python Implementation.srt 26.45KB
23. Pandas Input and Output - CSV Files.mp4 49.87MB
23. Pandas Input and Output - CSV Files.srt 16.59KB
24 834.26KB
24. L1 Regularization - Lasso Regression - Background and Implementation.mp4 100.00MB
24. L1 Regularization - Lasso Regression - Background and Implementation.srt 22.44KB
24. Pandas Input and Output - HTML Tables.mp4 106.65MB
24. Pandas Input and Output - HTML Tables.srt 22.36KB
25 81.63KB
25. L1 and L2 Regularization - Elastic Net.mp4 93.41MB
25. L1 and L2 Regularization - Elastic Net.srt 25.72KB
25. Pandas Input and Output - Excel Files.mp4 34.58MB
25. Pandas Input and Output - Excel Files.srt 10.88KB
26 2.00MB
26. Linear Regression Project - Data Overview.mp4 39.07MB
26. Linear Regression Project - Data Overview.srt 7.67KB
26. Pandas Input and Output - SQL Databases.mp4 103.19MB
26. Pandas Input and Output - SQL Databases.srt 29.43KB
27 743.64KB
27. Pandas Pivot Tables.mp4 128.74MB
27. Pandas Pivot Tables.srt 32.18KB
28 1.25MB
28. Pandas Project Exercise Overview.mp4 41.07MB
28. Pandas Project Exercise Overview.srt 9.59KB
29 1.45MB
29. Pandas Project Exercise Solutions.mp4 181.60MB
29. Pandas Project Exercise Solutions.srt 38.76KB
3 240B
3.1 UNZIP_ME_FOR_NOTEBOOKS_V4.zip 35.69MB
3. Anaconda Python and Jupyter Install and Setup.mp4 98.75MB
3. Anaconda Python and Jupyter Install and Setup.srt 21.55KB
3. Capstone Project Solutions - Part Two.mp4 111.05MB
3. Capstone Project Solutions - Part Two.srt 23.48KB
3. Check-in Labeled Index in Pandas Series.html 163B
3. Coding Exercise Check-in Creating NumPy Arrays.html 163B
3. Cross Validation - Test Validation Train Split.mp4 77.29MB
3. Cross Validation - Test Validation Train Split.srt 21.65KB
3. Dealing with Outliers.mp4 141.01MB
3. Dealing with Outliers.srt 41.20KB
3. Decision Tree - Terminology.mp4 15.06MB
3. Decision Tree - Terminology.srt 6.42KB
3. Distribution Plots - Part One - Understanding Plot Types.mp4 32.05MB
3. Distribution Plots - Part One - Understanding Plot Types.srt 15.00KB
3. KNN Coding with Python - Part One.mp4 83.24MB
3. KNN Coding with Python - Part One.srt 22.24KB
3. Linear Regression - Understanding Ordinary Least Squares.mp4 86.26MB
3. Linear Regression - Understanding Ordinary Least Squares.srt 22.52KB
3. Logistic Regression - Theory and Intuition - Part One The Logistic Function.mp4 34.17MB
3. Logistic Regression - Theory and Intuition - Part One The Logistic Function.srt 8.09KB
3. Matplotlib - Understanding the Figure Object.mp4 25.81MB
3. Matplotlib - Understanding the Figure Object.srt 11.55KB
3. Python Crash Course - Part Two.mp4 22.25MB
3. Python Crash Course - Part Two.srt 18.03KB
3. Random Forests - Key Hyperparameters.mp4 19.13MB
3. Random Forests - Key Hyperparameters.srt 4.44KB
3. SVM - Theory and Intuition - Hyperplanes and Margins.mp4 66.78MB
3. SVM - Theory and Intuition - Hyperplanes and Margins.srt 18.58KB
3. Types of Machine Learning Algorithms.mp4 38.68MB
3. Types of Machine Learning Algorithms.srt 11.63KB
30 138.64KB
31 1.28MB
32 1.40MB
33 1.58MB
34 1.82MB
35 165.19KB
36 140.08KB
37 608.22KB
38 819.06KB
39 912.92KB
4 408B
4. Capstone Project Solutions - Part Three.mp4 143.96MB
4. Capstone Project Solutions - Part Three.srt 30.88KB
4. Cross Validation - cross_val_score.mp4 57.73MB
4. Cross Validation - cross_val_score.srt 17.42KB
4. Dealing with Missing Data Part One - Evaluation of Missing Data.mp4 56.66MB
4. Dealing with Missing Data Part One - Evaluation of Missing Data.srt 16.97KB
4. Decision Tree - Understanding Gini Impurity.mp4 35.66MB
4. Decision Tree - Understanding Gini Impurity.srt 11.10KB
4. Distribution Plots - Part Two - Coding with Seaborn.mp4 77.74MB
4. Distribution Plots - Part Two - Coding with Seaborn.srt 24.79KB
4. KNN Coding with Python - Part Two - Choosing K.mp4 112.37MB
4. KNN Coding with Python - Part Two - Choosing K.srt 35.26KB
4. Linear Regression - Cost Functions.mp4 36.02MB
4. Linear Regression - Cost Functions.srt 11.46KB
4. Logistic Regression - Theory and Intuition - Part Two Linear to Logistic.mp4 24.37MB
4. Logistic Regression - Theory and Intuition - Part Two Linear to Logistic.srt 7.27KB
4. Matplotlib - Implementing Figures and Axes.mp4 59.09MB
4. Matplotlib - Implementing Figures and Axes.srt 20.97KB
4. Note on Environment Setup - Please read me!.html 857B
4. NumPy Indexing and Selection.mp4 46.35MB
4. NumPy Indexing and Selection.srt 16.22KB
4. Python Crash Course - Part Three.mp4 23.17MB
4. Python Crash Course - Part Three.srt 16.57KB
4. Random Forests - Number of Estimators and Features in Subsets.mp4 60.90MB
4. Random Forests - Number of Estimators and Features in Subsets.srt 16.16KB
4. Series - Part Two.mp4 45.30MB
4. Series - Part Two.srt 15.37KB
4. Supervised Machine Learning Process.mp4 71.42MB
4. Supervised Machine Learning Process.srt 19.76KB
4. SVM - Theory and Intuition - Kernel Intuition.mp4 26.26MB
4. SVM - Theory and Intuition - Kernel Intuition.srt 7.11KB
40 85.57KB
41 386.56KB
42 1.95MB
43 281.57KB
44 716.53KB
45 1.81MB
46 1.74MB
47 353.75KB
48 777.03KB
49 1.07MB
5 269B
5.1 Backup Google Link for requirements.txt file.html 143B
5.2 requirements.txt 221B
5. Categorical Plots - Statistics within Categories - Understanding Plot Types.mp4 21.86MB
5. Categorical Plots - Statistics within Categories - Understanding Plot Types.srt 8.80KB
5. Coding Exercise Check-in Selecting Data from Numpy Array.html 163B
5. Companion Book - Introduction to Statistical Learning.mp4 19.29MB
5. Companion Book - Introduction to Statistical Learning.srt 4.66KB
5. Constructing Decision Trees with Gini Impurity - Part One.mp4 38.32MB
5. Constructing Decision Trees with Gini Impurity - Part One.srt 11.48KB
5. Cross Validation - cross_validate.mp4 47.61MB
5. Cross Validation - cross_validate.srt 11.23KB
5. DataFrames - Part One - Creating a DataFrame.mp4 114.08MB
5. DataFrames - Part One - Creating a DataFrame.srt 29.00KB
5. Dealing with Missing Data Part Two - Filling or Dropping data based on Rows.mp4 125.24MB
5. Dealing with Missing Data Part Two - Filling or Dropping data based on Rows.srt 31.42KB
5. Environment Setup.mp4 49.32MB
5. Environment Setup.srt 14.49KB
5. KNN Classification Project Exercise Overview.mp4 31.18MB
5. KNN Classification Project Exercise Overview.srt 5.23KB
5. Linear Regression - Gradient Descent.mp4 65.04MB
5. Linear Regression - Gradient Descent.srt 16.73KB
5. Logistic Regression - Theory and Intuition - Linear to Logistic Math.mp4 75.82MB
5. Logistic Regression - Theory and Intuition - Linear to Logistic Math.srt 24.81KB
5. Matplotlib - Figure Parameters.mp4 23.75MB
5. Matplotlib - Figure Parameters.srt 7.65KB
5. Python Crash Course - Exercise Questions.mp4 5.01MB
5. Python Crash Course - Exercise Questions.srt 2.53KB
5. Random Forests - Bootstrapping and Out-of-Bag Error.mp4 63.32MB
5. Random Forests - Bootstrapping and Out-of-Bag Error.srt 17.97KB
5. SVM - Theory and Intuition - Kernel Trick and Mathematics.mp4 93.86MB
5. SVM - Theory and Intuition - Kernel Trick and Mathematics.srt 29.30KB
50 832.81KB
51 1.26MB
52 1.89MB
53 1.89MB
54 265.85KB
55 727.75KB
56 1.17MB
57 182.99KB
58 314.95KB
59 1.79MB
6 1.17MB
6. Categorical Plots - Statistics within Categories - Coding with Seaborn.mp4 54.99MB
6. Categorical Plots - Statistics within Categories - Coding with Seaborn.srt 14.61KB
6. Coding Classification with Random Forest Classifier - Part One.mp4 68.49MB
6. Coding Classification with Random Forest Classifier - Part One.srt 18.08KB
6. Constructing Decision Trees with Gini Impurity - Part Two.mp4 52.15MB
6. Constructing Decision Trees with Gini Impurity - Part Two.srt 16.42KB
6. DataFrames - Part Two - Basic Properties.mp4 53.90MB
6. DataFrames - Part Two - Basic Properties.srt 13.28KB
6. Dealing with Missing Data Part 3 - Fixing data based on Columns.mp4 122.78MB
6. Dealing with Missing Data Part 3 - Fixing data based on Columns.srt 36.75KB
6. Grid Search.mp4 78.11MB
6. Grid Search.srt 19.26KB
6. KNN Classification Project Exercise Solutions.mp4 109.73MB
6. KNN Classification Project Exercise Solutions.srt 21.40KB
6. Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood.mp4 76.83MB
6. Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood.srt 22.96KB
6. Matplotlib - Subplots Functionality.mp4 96.18MB
6. Matplotlib - Subplots Functionality.srt 28.63KB
6. NumPy Operations.mp4 48.59MB
6. NumPy Operations.srt 12.05KB
6. Python coding Simple Linear Regression.mp4 91.92MB
6. Python coding Simple Linear Regression.srt 28.14KB
6. Python Crash Course - Exercise Solutions.mp4 25.10MB
6. Python Crash Course - Exercise Solutions.srt 13.43KB
6. SVM with Scikit-Learn and Python - Classification Part One.mp4 62.71MB
6. SVM with Scikit-Learn and Python - Classification Part One.srt 16.38KB
60 797.60KB
61 862.54KB
62 977.87KB
63 1.07MB
64 594.83KB
65 762.90KB
66 1.84MB
67 1.51MB
68 1.22MB
69 985.60KB
7 1.39MB
7. Categorical Plots - Distributions within Categories - Understanding Plot Types.mp4 61.09MB
7. Categorical Plots - Distributions within Categories - Understanding Plot Types.srt 20.10KB
7. Check-In Operations on NumPy Array.html 163B
7. Coding Classification with Random Forest Classifier - Part Two.mp4 139.04MB
7. Coding Classification with Random Forest Classifier - Part Two.srt 32.15KB
7. Coding Decision Trees - Part One - The Data.mp4 115.13MB
7. Coding Decision Trees - Part One - The Data.srt 29.27KB
7. DataFrames - Part Three - Working with Columns.mp4 89.30MB
7. DataFrames - Part Three - Working with Columns.srt 20.61KB
7. Dealing with Categorical Data - Encoding Options.mp4 78.74MB
7. Dealing with Categorical Data - Encoding Options.srt 20.10KB
7. Linear Regression Project Overview.mp4 27.48MB
7. Linear Regression Project Overview.srt 5.82KB
7. Logistic Regression with Scikit-Learn - Part One - EDA.mp4 73.22MB
7. Logistic Regression with Scikit-Learn - Part One - EDA.srt 21.90KB
7. Matplotlib Styling - Legends.mp4 34.10MB
7. Matplotlib Styling - Legends.srt 10.35KB
7. Overview of Scikit-Learn and Python.mp4 45.61MB
7. Overview of Scikit-Learn and Python.srt 12.34KB
7. SVM with Scikit-Learn and Python - Classification Part Two.mp4 96.60MB
7. SVM with Scikit-Learn and Python - Classification Part Two.srt 23.94KB
70 696.97KB
71 1.29MB
72 1.42MB
73 928.47KB
74 935.07KB
75 1.10MB
76 1.54MB
77 1.98MB
78 492.64KB
79 934.69KB
8 781.77KB
8. Categorical Plots - Distributions within Categories - Coding with Seaborn.mp4 111.24MB
8. Categorical Plots - Distributions within Categories - Coding with Seaborn.srt 28.26KB
8. Coding Decision Trees - Part Two -Creating the Model.mp4 136.35MB
8. Coding Decision Trees - Part Two -Creating the Model.srt 32.69KB
8. Coding Regression with Random Forest Regressor - Part One - Data.mp4 27.61MB
8. Coding Regression with Random Forest Regressor - Part One - Data.srt 6.86KB
8. DataFrames - Part Four - Working with Rows.mp4 96.72MB
8. DataFrames - Part Four - Working with Rows.srt 21.08KB
8. Linear Regression Project - Solutions.mp4 95.84MB
8. Linear Regression Project - Solutions.srt 18.29KB
8. Linear Regression - Scikit-Learn Train Test Split.mp4 82.93MB
8. Linear Regression - Scikit-Learn Train Test Split.srt 23.78KB
8. Logistic Regression with Scikit-Learn - Part Two - Model Training.mp4 35.26MB
8. Logistic Regression with Scikit-Learn - Part Two - Model Training.srt 9.57KB
8. Matplotlib Styling - Colors and Styles.mp4 81.19MB
8. Matplotlib Styling - Colors and Styles.srt 21.04KB
8. NumPy Exercises.mp4 11.52MB
8. NumPy Exercises.srt 2.07KB
8. SVM with Scikit-Learn and Python - Regression Tasks.mp4 99.27MB
8. SVM with Scikit-Learn and Python - Regression Tasks.srt 29.99KB
80 1000.23KB
81 276.90KB
82 1.34MB
83 1.01MB
84 1.29MB
85 28.96KB
86 100.95KB
87 394.69KB
88 397.47KB
89 835.09KB
9 910.45KB
9. Advanced Matplotlib Commands (Optional).mp4 40.44MB
9. Advanced Matplotlib Commands (Optional).srt 6.49KB
9. Classification Metrics - Confusion Matrix and Accuracy.mp4 46.99MB
9. Classification Metrics - Confusion Matrix and Accuracy.srt 13.92KB
9. Coding Regression with Random Forest Regressor - Part Two - Basic Models.mp4 89.73MB
9. Coding Regression with Random Forest Regressor - Part Two - Basic Models.srt 20.42KB
9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.mp4 73.16MB
9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.srt 23.00KB
9. Numpy Exercises - Solutions.mp4 48.57MB
9. Numpy Exercises - Solutions.srt 10.87KB
9. Pandas - Conditional Filtering.mp4 90.05MB
9. Pandas - Conditional Filtering.srt 27.14KB
9. Seaborn - Comparison Plots - Understanding the Plot Types.mp4 23.35MB
9. Seaborn - Comparison Plots - Understanding the Plot Types.srt 8.73KB
9. Support Vector Machine Project Overview.mp4 40.46MB
9. Support Vector Machine Project Overview.srt 6.87KB
90 1.38MB
91 1.85MB
92 109.57KB
93 1.22MB
94 1.49MB
95 1.81MB
96 93.25KB
97 132.55KB
98 697.10KB
99 1.13MB
TutsNode.com.txt 63B
Distribution statistics by country
Thailand (TH) 1
India (IN) 1
United States (US) 1
Russia (RU) 1
Estonia (EE) 1
United Arab Emirates (AE) 1
Total 6
IP List List of IP addresses which were distributed this torrent